cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A326781 No position of a 1 in the reversed binary expansion of n is a power of 2.

Original entry on oeis.org

0, 4, 16, 20, 32, 36, 48, 52, 64, 68, 80, 84, 96, 100, 112, 116, 256, 260, 272, 276, 288, 292, 304, 308, 320, 324, 336, 340, 352, 356, 368, 372, 512, 516, 528, 532, 544, 548, 560, 564, 576, 580, 592, 596, 608, 612, 624, 628, 768, 772, 784, 788, 800, 804, 816
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

Also BII-numbers (see A326031) of set-systems with no singleton edges. For example, the sequence of such set-systems together with their BII-numbers begins:
0: {}
4: {{1,2}}
16: {{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
80: {{1,3},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
96: {{2,3},{1,2,3}}
100: {{1,2},{2,3},{1,2,3}}
112: {{1,3},{2,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
256: {{1,4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}

Examples

			The binary indices of n are row n of A048793. The sequence of terms together with their binary indices begins:
    0: {}
    4: {3}
   16: {5}
   20: {3,5}
   32: {6}
   36: {3,6}
   48: {5,6}
   52: {3,5,6}
   64: {7}
   68: {3,7}
   80: {5,7}
   84: {3,5,7}
   96: {6,7}
  100: {3,6,7}
  112: {5,6,7}
  116: {3,5,6,7}
  256: {9}
  260: {3,9}
  272: {5,9}
  276: {3,5,9}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],!MemberQ[Length/@bpe/@bpe[#],1]&]

Formula

Conjectures from Colin Barker, Jul 27 2019: (Start)
G.f.: 4*x^2*(1 + 3*x + x^2 + 3*x^3 + x^4 + 3*x^5 + x^6 + 3*x^7 + x^8 + 3*x^9 + x^10 + 3*x^11 + x^12 + 3*x^13 + x^14 + 35*x^15) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)).
a(n) = a(n-1) + a(n-16) - a(n-17) for n>17.
(End)

A340018 MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.

Original entry on oeis.org

1, 3, 13, 15, 39, 65, 141, 143, 145, 165, 195, 377, 429, 435, 611, 705, 715, 1131, 1363, 1551, 1595, 1833, 1885, 1937, 2021, 2117, 2145, 2235, 2365, 2397, 2409, 2431, 2465, 2805, 3055, 4089, 4147, 4785, 5655, 5811, 6063, 6149, 6235, 6351, 6409, 6721, 6815
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime, and whose prime indices together cover an initial interval of positive integers. A squarefree semiprime (A006881) is a product of any two distinct prime numbers.

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}
     3: {{1}}
    13: {{1,2}}
    15: {{1},{2}}
    39: {{1},{1,2}}
    65: {{2},{1,2}}
   141: {{1},{2,3}}
   143: {{3},{1,2}}
   145: {{2},{1,3}}
   165: {{1},{2},{3}}
   195: {{1},{2},{1,2}}
   377: {{1,2},{1,3}}
   429: {{1},{3},{1,2}}
   435: {{1},{2},{1,3}}
   611: {{1,2},{2,3}}
   705: {{1},{2},{2,3}}
   715: {{2},{3},{1,2}}
  1131: {{1},{1,2},{1,3}}
		

Crossrefs

The version with full loops is A320461.
The version not necessarily covering an initial interval is A340019.
MM-numbers of graphs with loops are A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A326785 BII-numbers of uniform regular set-systems.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 16, 32, 52, 64, 128, 129, 130, 131, 136, 137, 138, 139, 256, 288, 512, 528, 772, 816, 1024, 2048, 2052, 2320, 2340, 2580, 2592, 2868, 4096, 8192, 13376, 16384, 32768, 32769, 32770, 32771, 32776, 32777, 32778, 32779, 32896, 32897
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. A set-system is uniform if all edges have the same size, and regular if all vertices appear the same number of times.

Examples

			The sequence of all uniform regular set-systems together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   16: {{1,3}}
   32: {{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
  130: {{2},{4}}
  131: {{1},{2},{4}}
  136: {{3},{4}}
  137: {{1},{3},{4}}
  138: {{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],SameQ@@Length/@bpe/@bpe[#]&&SameQ@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]&]

Formula

Intersection of A326783 and A326784.
Previous Showing 11-13 of 13 results.