cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A327372 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 3, 1, 1, 1, 1, 11, 5, 4, 1, 2, 0, 62, 29, 18, 6, 4, 2, 1, 510, 225, 101, 32, 13, 4, 3, 0, 7459, 2674, 842, 223, 72, 19, 9, 3, 1, 197867, 50834, 10784, 2171, 504, 115, 34, 9, 4, 0, 9808968, 1653859, 228863, 32322, 5268, 944, 209, 46, 16, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
   1
   0  0
   0  0  1
   1  0  1  0
   3  1  1  1  1
  11  5  4  1  2  0
		

Crossrefs

Row sums are A002494.
Column k = 0 is A261919.
The non-covering version is A327371.
The labeled version is A327377.

Programs

  • PARI
    \\ Needs G(n) defined in A327371.
    T(n)={my(v=Vec(G(n)*(1 - x))); vector(#v, n, Vecrev(v[n], n))}
    my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 11 2024

Formula

Column-wise first differences of A327371.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 11 2019

A277074 Number of n-node labeled graphs with three endpoints.

Original entry on oeis.org

0, 0, 0, 4, 80, 1860, 64680, 3666600, 354093264, 59372032440, 17572209206640, 9347625940951980, 9099961952914672840, 16480899322963497105684, 56311549004017312945310280, 367105988116570172056739960080
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=3 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := 1/6*z^4/(1-z)^3*XGF:
    K2 := 1/2*z^4/(1-z)^2*(diff(XGF,z)-XGF):
    K3 := 1/6*z^6/(1-z)^3*(diff(XGF, z$3)-3*diff(XGF, z$2)+3*diff(XGF,z)-XGF):
    K4 := 1/2*z^5/(1-z)^4*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
    K5 := 1/6*z^4/(1-z)^4*(diff(XGF,z)-XGF):
    K6 := 1/2*z^5/(1-z)^5*(diff(XGF,z)-XGF):
    XS := series(K1+K2+K3+K4+K5+K6, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m+1}];
    egf = (1/6)*(z^4/(1-z)^3)*A[z] + (1/2)*(z^4/(1-z)^2)*(A'[z] - A[z]) + (1/6)*(z^6/(1-z)^3)*(A'''[z] - 3*A''[z] + 3*A'[z] - A[z]) + (1/2)*(z^5/(1 - z)^4)*(A''[z] - 2*A'[z] + A[z]) + (1/6)*(z^4/(1-z)^4)*(A'[z] - A[z]) + (1/2)*(z^5/(1-z)^5)*(A'[z] - A[z]); s = egf + O[z]^(m+1);
    a[n_] := n!*SeriesCoefficient[s, n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (1/6)*(z^4/(1-z)^3)*A(z) + (1/2)*(z^4/(1-z)^2)*(A'(z)-A(z)) + (1/6)*(z^6/(1-z)^3)*(A'''(z)-3*A''(z)+3*A'(z)-A(z)) + (1/2)*(z^5/(1-z)^4)*(A''(z)-2*A'(z)+A(z)) + (1/6)*(z^4/(1-z)^4)*(A'(z)-A(z)) + (1/2)*(z^5/(1-z)^5)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0} 2^binomial(n, 2)*(z/exp(z))^n/n!.

A327379 Number of labeled non-mating-type graphs with n vertices.

Original entry on oeis.org

0, 1, 4, 32, 436, 11292, 545784, 49826744, 8647819328, 2876819527744, 1848998498567936, 2312324942899031040, 5659406410382924819712, 27230994319259100289485568, 258465217554621196991878652416, 4851552662579126853087143276476928
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A mating-type graph has all different rows in its adjacency matrix.

Crossrefs

The unlabeled version is A141580.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!UnsameQ@@AdjacencyMatrix[Graph[Range[n],#]]&]],{n,5}]
  • PARI
    a(n) = {2^binomial(n,2) - sum(k=0, n, stirling(n, k, 1)*2^binomial(k,2))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A006125(n) - A006024(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019
Previous Showing 11-13 of 13 results.