A328434
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.
Original entry on oeis.org
1, 1, 2, 6, 21, 81, 346, 1630, 8350, 45958, 269815, 1681285, 11071336, 76743040, 558062437, 4244853573, 33687390663, 278296576327, 2388351295760, 21254019548162, 195801111412320, 1864508416302520, 18326903140310011, 185711672802101781, 1937795878138303715
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, 201, and 210 are 0101, 0102 and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n=0, 1, add(
`if`(t and i>x, 0, b(n-1, i, i<>x and x>-1)), i=0..n-1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i > x, 0, b[n - 1, i, i != x && x > -1]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328435
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.
Original entry on oeis.org
1, 1, 2, 6, 21, 83, 368, 1814, 9837, 58095, 370499, 2534374, 18493023, 143280489, 1173971656, 10136279104, 91936857611, 873547634921, 8673546319685, 89796095349193, 967384904147690, 10825116242427973, 125613702370667158, 1509222589338456874, 18748890945849736182
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, and 201 are 0101, 0102, and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x < i, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328436
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 001.
Original entry on oeis.org
1, 1, 2, 3, 9, 37, 190, 1181, 8564, 70914, 659810, 6811371, 77232836, 953969548, 12747856402, 183218649413, 2818050980941, 46182485773217, 803323102085452, 14781372445602234, 286838921699435184, 5854404018902152208, 125367868007259046305, 2810511319383912299122
Offset: 0
The a(4)=9 length 4 inversion sequences avoiding the consecutive patterns 000 and 001 are 0100, 0110, 0120, 0101, 0121, 0102, 0122, 0103, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i = x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328438
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 011.
Original entry on oeis.org
1, 1, 2, 4, 13, 57, 304, 1937, 14315, 120264, 1131896, 11794453, 134774963, 1675630582, 22516745452, 325188337067, 5022796990606, 82620491929333, 1441894214312037, 26609607869036180, 517741915593936360, 10592513721179374467, 227325651424365263577, 5106351205789851629476
Offset: 0
The a(4)=13 length 4 inversion sequences avoiding the consecutive patterns 000 and 011 are 0100, 0010, 0020, 0120, 0101, 0021, 0121, 0102, 0012, 0103, 0013, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i <= x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328440
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 100.
Original entry on oeis.org
1, 1, 2, 5, 18, 81, 448, 2920, 21955, 186981, 1779170, 18706222, 215364181, 2694650157, 36408144034, 528302958022, 8193953571315, 135277259197031, 2368556730208679, 43838335667451773, 855200666797199814, 17538187897491897945, 377199969925672569364, 8489656058119117230574
Offset: 0
The a(4)=18 length 4 inversion sequences avoiding the consecutive patterns 000 and 100 are 0010, 0110, 0020, 0120, 0101, 0011, 0021, 0121, 0102, 0012, 0112, 0022, 0122, 0103, 0013, 0113, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x <= i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x <= i, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328409
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j < k or i <= j >= k.
Original entry on oeis.org
1, 1, 2, 3, 6, 16, 57, 245, 1248, 7151, 46104, 325560, 2523437, 21106494, 190806861, 1842347541, 19018910502, 208088481921, 2414462433024, 29512737830802, 380156646308541, 5133381861786182, 72678441538790901, 1074324277172134786, 16581261996774703606
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 0.
a(2) = 2: 00, 01.
a(3) = 3: 000, 010, 011.
a(4) = 6: 0000, 0101, 0102, 0103, 0110, 0111.
a(5) = 16: 00000, 01010, 01011, 01020, 01021, 01022, 01030, 01031, 01032, 01033, 01101, 01102, 01103, 01104, 01110, 01111.
-
b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`((i>j
xor t) and c=0, 0, b(n-1, i, is(i b(n, 0, true, 2):
seq(a(n), n=0..24);
-
b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i>j, t] && c == 0, 0, b[n - 1, i, iJean-François Alcover, Feb 26 2020, after Alois P. Heinz *)
A328425
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i < j > k or i >= j <= k.
Original entry on oeis.org
1, 1, 2, 4, 11, 36, 142, 647, 3383, 19816, 129162, 923279, 7201951, 60720996, 551268926, 5352973967, 55430433719, 609033864160, 7083303687843, 86864585123112, 1120997775904467, 15176639841694385, 215196709973260722, 3187766448289854016, 49262381105608795771
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 0.
a(2) = 2: 00, 01.
a(3) = 4: 000, 001, 002, 010.
a(5) = 11: 0000, 0001, 0002, 0003, 0010, 0020, 0021, 0100, 0101, 0102, 0103.
a(6) = 36: 00000, 00001, 00002, 00003, 00004, 00010, 00020, 00021, 00030, 00031, 00032, 00100, 00101, 00102, 00103, 00104, 00200, 00201, 00202, 00203, 00204, 00211, 00212, 00213, 00214, 01000, 01001, 01002, 01003, 01004, 01010, 01020, 01021, 01030, 01031, 01032.
-
b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`((ij), max(0, c-1))), i=1..n))
end:
a:= n-> b(n, 0, true, 2):
seq(a(n), n=0..24);
-
b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i < j, t] && c == 0, 0, b[n - 1, i, i > j, Max[0, c - 1]]], {i, 1, n}]];
a[n_] := b[n, 0, True, 2];
a /@ Range[0, 24] (* Jean-François Alcover, Feb 26 2020, after Alois P. Heinz *)
A328491
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j <= k or i <= j > k.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 32, 89, 592, 2402, 19072, 101866, 939136, 6221228, 65291264, 516212409, 6075261184, 55812055946, 727912302592, 7618369901774, 109058247342080, 1280820543489044, 19965414947799040, 259988000952099210, 4383593333171363840, 62680335913868539796
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 0.
a(2) = 2: 00, 01.
a(3) = 1: 010.
a(4) = 4: 0100, 0101, 0102, 0103.
a(5) = 6: 01010, 01020, 01021, 01030, 01031, 01032.
a(6) = 32: 010100, 010101, 010102, 010103, 010104, 010105, 010200, 010201, 010202, 010203, 010204, 010205, 010211, 010212, 010213, 010214, 010215, 010300, 010301, 010302, 010303, 010304, 010305, 010311, 010312, 010313, 010314, 010315, 010322, 010323, 010324, 010325.
-
b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`(c=0 and
(i>j xor t), 0, b(n-1, i, is(i<=j), max(0, c-1))), i=1..n))
end:
a:= n-> b(n, 0, true, 2):
seq(a(n), n=0..27);
-
b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i > j, t] && c == 0, 0, b[n - 1, i, i <= j, Max[0, c - 1]]], {i, 1, n}]];
a[n_] := b[n, 0, True, 2];
a /@ Range[0, 27] (* Jean-François Alcover, Feb 26 2020, after Alois P. Heinz *)
A326308
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j < k or i < j > k.
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 26, 85, 476, 2171, 14905, 87153, 708825, 5053464, 47514180, 399542814, 4264132468, 41306091312, 493337571005, 5408829555639, 71476985762027, 874870165668858, 12673922434134249, 171294209823727623, 2699365743596908540, 39925463781029750810
Offset: 0
a(6) = 26: 010101, 010102, 010103, 010104, 010105, 010201, 010202, 010203, 010204, 010205, 010212, 010213, 010214, 010215, 010301, 010302, 010303, 010304, 010305, 010312, 010313, 010314, 010315, 010323, 010324, 010325.
-
b:= proc(n, j, t, u, c) option remember; `if`(n=0, 1, add(
`if`(c>0 or i>j and t or ij), max(0, c-1)), 0), i=1..n))
end:
a:= n-> b(n, 0, true$2, 2):
seq(a(n), n=0..25);
-
b[n_, j_, t_, u_, c_] := b[n, j, t, u, c] = If[n == 0, 1, Sum[If[c>0 || i>j && t || ij, Max[0, c-1]], 0], {i, 1, n}]];
a[n_] := b[n, 0, True, True, 2];
a /@ Range[0, 25] (* Jean-François Alcover, Feb 29 2020, after Alois P. Heinz *)
A326412
Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i >= j <= k or i <= j >= k.
Original entry on oeis.org
1, 1, 2, 5, 17, 69, 330, 1797, 11028, 74932, 559351, 4540088, 39840318, 375421225, 3782383945, 40548234374, 460956742449, 5536790753853, 70077462043662, 931945968071778, 12993337101354500, 189485727877247991, 2884989393948284323, 45772604755492432599
Offset: 0
a(4) = 17: 0000, 0001, 0002, 0003, 0010, 0011, 0020, 0021, 0022, 0100, 0101, 0102, 0103, 0110, 0111, 0112, 0113.
-
b:= proc(n, j, t, u, c) option remember; `if`(n=0, 1, add(
`if`(c>0 or i>=j and t or i<=j and u, b(n-1, i,
is(i<=j), is(i>=j), max(0, c-1)), 0), i=1..n))
end:
a:= n-> b(n, 0, true$2, 2):
seq(a(n), n=0..25);
-
b[n_, j_, t_, u_, c_] := b[n, j, t, u, c] = If[n == 0, 1, Sum[If[c > 0 || i >= j && t || i <= j && u, b[n - 1, i, i <= j, i >= j , Max[0, c - 1]], 0], {i, 1, n}]];
a[n_] := b[n, 0, True, True, 2];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 01 2020, after Alois P. Heinz *)
Comments