cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A257250 Numbers n for which A256999(n) = n; numbers that cannot be made any larger by rotating (by one or more steps) the non-msb bits of their binary representation (with A080541 or A080542).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 26, 28, 30, 31, 32, 48, 52, 56, 58, 60, 62, 63, 64, 96, 100, 104, 106, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 192, 200, 208, 212, 224, 226, 228, 232, 234, 236, 240, 242, 244, 246, 248, 250, 252, 254, 255, 256, 384, 392, 400, 416, 420, 424, 426, 448, 450
Offset: 0

Views

Author

Antti Karttunen, May 16 2015

Keywords

Comments

These correspond to the maximal (lexicographically largest) representatives selected from each equivalence class of binary necklaces. See the last example.
Indexing starts from zero, because a(0) = 0 is a special case.
If k is a member then so also is 2*k, i.e., k with 0 appended to the end of its binary representation.
If k is a member then so also is A004755(k), i.e., k with 1 prepended to the front of its binary representation.
One obtains A065609 if one erases the most significant bit of each term [as A053645(a(n))] and then discards any zero-terms produced from the terms that originally were powers of two (A000079).
First differs from A328607 in lacking 108, with binary expansion 1101100. If we define a dual-necklace to be a finite sequence that is lexicographically maximal (not minimal) among all of its cyclic rotations, these are numbers whose binary expansion, without the most significant digit, is a dual-necklace. - Gus Wiseman, Nov 04 2019

Examples

			For n = 5, with binary representation "101", if we rotate other bits than the most significant bit (that is, only the two rightmost digits "01") one step to either direction, we get "110" = 6 > 5, so 5 can be made larger by such rotations, and thus is NOT included in this sequence.
For n = 6, with binary representation "110", no such rotation will yield a larger number, and thus 6 is included in this sequence.
For n = 28, with binary representation "11100", if we rotate non-msb bits towards right, we get additional numbers 22, 19 and 25 (with binary representations "10110", "10011", "11001") before coming to 28 again, and 28 is the largest of these numbers, thus 28 is included in this sequence.
  Also, if we discard the most significant bit of each and consider them just as binary strings, then A053645(28) = 12 is the lexicographically largest representative of {"1100", "0110", "0011", "1001"}, which is the complete set of representatives for a particular equivalence class of binary necklaces, obtained by rotating all bits of binary string "1100" successively towards right or left.
		

Crossrefs

Complement: A257739.
Odd terms: A000225.
Subsequence of A065609.
Subsequence: A258003.
The non-dual version is A328668.
The version involving all digits is A065609.
The non-dual reversed version is A328607.
Numbers whose reversed binary expansion is a necklace are A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    reckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Select[Range[0,110],#<=1||reckQ[Rest[IntegerDigits[#,2]]]&] (* Gus Wiseman, Nov 04 2019 *)

A334029 Length of the co-Lyndon factorization of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1,0,0,1) has co-Lyndon factorization {(1),(1,0,0)}.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
		

Crossrefs

The dual version is A329312.
The version for binary expansion is (also) A329312.
The version for reversed binary expansion is A329326.
Binary Lyndon/co-Lyndon words are counted by A001037.
Necklaces covering an initial interval are A019536.
Lyndon/co-Lyndon compositions are counted by A059966
Length of Lyndon factorization of binomial expansion is A211100.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of reversed binary expansion is A329313.
A list of all binary co-Lyndon words is A329318.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Co-necklaces are A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
    Table[Length[colynfac[stc[n]]],{n,0,100}]

A328593 Numbers whose binary indices have no consecutive divisible parts.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 40, 44, 46, 48, 50, 52, 54, 56, 60, 62, 64, 66, 68, 70, 72, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 104, 108, 110, 112, 114, 116, 118, 120, 124, 126, 128, 132, 134, 144, 146, 148, 150, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Oct 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   8:   1000 ~ {4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  16:  10000 ~ {5}
  18:  10010 ~ {2,5}
  20:  10100 ~ {3,5}
  22:  10110 ~ {2,3,5}
  24:  11000 ~ {4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  32: 100000 ~ {6}
  40: 101000 ~ {4,6}
  44: 101100 ~ {3,4,6}
  46: 101110 ~ {2,3,4,6}
  48: 110000 ~ {5,6}
  50: 110010 ~ {2,5,6}
		

Crossrefs

The version for prime indices is A328603.
Numbers with no successive binary indices are A003714.
Partitions with no consecutive divisible parts are A328171.
Compositions without consecutive divisible parts are A328460.

Programs

  • Mathematica
    Select[Range[0,100],!MatchQ[Join@@Position[Reverse[IntegerDigits[#,2]],1],{_,x_,y_,_}/;Divisible[y,x]]&]

A334265 Numbers k such that the k-th composition in standard order is a reversed Lyndon word.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 11, 16, 17, 18, 19, 21, 23, 32, 33, 34, 35, 37, 39, 41, 43, 47, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 87, 91, 95, 128, 129, 130, 131, 132, 133, 135, 137, 138, 139, 141, 143, 145, 146, 147, 149, 151, 155, 159, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Apr 22 2020

Keywords

Comments

Reversed Lyndon words are different from co-Lyndon words (A326774).
A Lyndon word is a finite sequence of positive integers that is lexicographically strictly less than all of its cyclic rotations.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of all reversed Lyndon words begins:
    0: ()            37: (3,2,1)         83: (2,3,1,1)
    1: (1)           39: (3,1,1,1)       85: (2,2,2,1)
    2: (2)           41: (2,3,1)         87: (2,2,1,1,1)
    4: (3)           43: (2,2,1,1)       91: (2,1,2,1,1)
    5: (2,1)         47: (2,1,1,1,1)     95: (2,1,1,1,1,1)
    8: (4)           64: (7)            128: (8)
    9: (3,1)         65: (6,1)          129: (7,1)
   11: (2,1,1)       66: (5,2)          130: (6,2)
   16: (5)           67: (5,1,1)        131: (6,1,1)
   17: (4,1)         68: (4,3)          132: (5,3)
   18: (3,2)         69: (4,2,1)        133: (5,2,1)
   19: (3,1,1)       71: (4,1,1,1)      135: (5,1,1,1)
   21: (2,2,1)       73: (3,3,1)        137: (4,3,1)
   23: (2,1,1,1)     74: (3,2,2)        138: (4,2,2)
   32: (6)           75: (3,2,1,1)      139: (4,2,1,1)
   33: (5,1)         77: (3,1,2,1)      141: (4,1,2,1)
   34: (4,2)         79: (3,1,1,1,1)    143: (4,1,1,1,1)
   35: (4,1,1)       81: (2,4,1)        145: (3,4,1)
		

Crossrefs

The non-reversed version is A275692.
The generalization to necklaces is A333943.
The dual version (reversed co-Lyndon words) is A328596.
The case that is also co-Lyndon is A334266.
Binary Lyndon words are counted by A001037.
Lyndon compositions are counted by A059966.
Normal Lyndon words are counted by A060223.
Numbers whose prime signature is a reversed Lyndon word are A334298.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Reversed Lyndon words are A334265 (this sequence).
- Co-Lyndon words are A326774.
- Reversed co-Lyndon words are A328596.
- Length of Lyndon factorization is A329312.
- Distinct rotations are counted by A333632.
- Lyndon factorizations are counted by A333940.
- Length of Lyndon factorization of reverse is A334297.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    lynQ[q_]:=Length[q]==0||Array[Union[{q,RotateRight[q,#1]}]=={q,RotateRight[q,#1]}&,Length[q]-1,1,And];
    Select[Range[0,100],lynQ[Reverse[stc[#]]]&]

A302291 a(n) is the period of the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 4, 4, 4, 4, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 2, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Rémy Sigrist, Apr 04 2018

Keywords

Comments

Zero is assumed to be represented as 0; otherwise, leading zeros are ignored.
See A302295 for the variant where leading zeros are allowed.

Examples

			The first terms, alongside the binary expansion of n with periodic part in parentheses, are:
  n  a(n)    bin(n)
  -- ----    ------
   0    1    (0)
   1    1    (1)
   2    2    (10)
   3    1    (1)(1)
   4    3    (100)
   5    3    (101)
   6    3    (110)
   7    1    (1)(1)(1)
   8    4    (1000)
   9    4    (1001)
  10    2    (10)(10)
  11    4    (1011)
  12    4    (1100)
  13    4    (1101)
  14    4    (1110)
  15    1    (1)(1)(1)(1)
  16    5    (10000)
  17    5    (10001)
  18    5    (10010)
  19    5    (10011)
  20    5    (10100)
		

Crossrefs

Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
Numbers whose prime signature is aperiodic are A329139.
Compositions by number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Reversed necklaces are A333943.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Array[RotateRight[IntegerDigits[n,2],#]&,IntegerLength[n,2]]]]],{n,0,50}] (* Gus Wiseman, Apr 19 2020 *)
  • PARI
    a(n) = my (l=max(1, #binary(n))); fordiv (l, w, if (#Set(digits(n, 2^w))<=1, return (w)))

Formula

a(n) = A070939(n) / A138904(n).
a(2^n) = n + 1 for any n >= 0.
a(2^n - 1) = 1 for any n >= 0.
a(A020330(n)) = a(n) for any n > 0.

A333939 Number of multisets of compositions that can be shuffled together to obtain the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 5, 4, 5, 1, 2, 2, 4, 2, 4, 5, 7, 2, 5, 4, 10, 4, 10, 7, 7, 1, 2, 2, 4, 2, 5, 5, 7, 2, 5, 3, 9, 5, 13, 11, 12, 2, 5, 5, 10, 5, 11, 13, 18, 4, 10, 9, 20, 7, 18, 12, 11, 1, 2, 2, 4, 2, 5, 5, 7, 2, 4, 4, 11, 5, 14, 11, 12, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2020

Keywords

Comments

Number of ways to deal out the k-th composition in standard order to form a multiset of hands.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The dealings for n = 1, 3, 7, 11, 13, 23, 43:
  (1)  (11)    (111)      (211)      (121)      (2111)        (2211)
       (1)(1)  (1)(11)    (1)(21)    (1)(12)    (11)(21)      (11)(22)
               (1)(1)(1)  (2)(11)    (1)(21)    (1)(211)      (1)(221)
                          (1)(1)(2)  (2)(11)    (2)(111)      (21)(21)
                                     (1)(1)(2)  (1)(1)(21)    (2)(211)
                                                (1)(2)(11)    (1)(1)(22)
                                                (1)(1)(1)(2)  (1)(2)(21)
                                                              (2)(2)(11)
                                                              (1)(1)(2)(2)
		

Crossrefs

Multisets of compositions are counted by A034691.
Combinatory separations of normal multisets are counted by A269134.
Dealings with total sum n are counted by A292884.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Aperiodic compositions are A328594.
- Length of Lyndon factorization is A329312.
- Distinct rotations are counted by A333632.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    nn=100;
    comps[0]:={{}};comps[n_]:=Join@@Table[Prepend[#,i]&/@comps[n-i],{i,n}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[dealings[stc[n]]],{n,0,nn}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A292884(n).

A329142 Numbers whose prime signature is not a necklace.

Original entry on oeis.org

1, 12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2019

Keywords

Comments

After a(1) = 1, first differs from A112769 in lacking 1350.
A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization.
A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their prime signatures begins:
   1: ()
  12: (2,1)
  20: (2,1)
  24: (3,1)
  28: (2,1)
  40: (3,1)
  44: (2,1)
  45: (2,1)
  48: (4,1)
  52: (2,1)
  56: (3,1)
  60: (2,1,1)
  63: (2,1)
  68: (2,1)
  72: (3,2)
  76: (2,1)
  80: (4,1)
  84: (2,1,1)
  88: (3,1)
  90: (1,2,1)
  92: (2,1)
		

Crossrefs

Complement of A329138.
Binary necklaces are A000031.
Non-necklace compositions are A329145.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a Lyndon word are A329131.
Numbers whose prime signature is periodic are A329140.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],#==1||!neckQ[Last/@FactorInteger[#]]&]

A334271 Number of compositions of n that are both a reversed necklace and a co-necklace.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 28, 43, 70, 111, 184, 303, 510, 865, 1482, 2573, 4480, 7915, 14008
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2020

Keywords

Comments

Also the number of compositions of n that are both a necklace and a reversed co-necklace.
A necklace is a finite sequence of positive integers that is lexicographically less than or equal to any cyclic rotation. Co-necklace is defined similarly, except with greater instead of less.

Examples

			The a(1) = 1 through a(6) = 12 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (21)   (22)    (32)     (33)
             (111)  (31)    (41)     (42)
                    (211)   (221)    (51)
                    (1111)  (311)    (222)
                            (2111)   (321)
                            (11111)  (411)
                                     (2121)
                                     (2211)
                                     (3111)
                                     (21111)
                                     (111111)
		

Crossrefs

Normal sequences of this type are counted by A334272.
The aperiodic case is A334269.
These compositions are ranked by A334273.
Binary (or reversed binary) necklaces are counted by A000031.
Normal sequences are counted by A000670.
Necklace compositions are counted by A008965.
Lyndon compositions are counted by A059966.
Normal Lyndon words are counted by A060223.
Normal necklaces are counted by A019536.
Normal aperiodic words are counted by A296975.
All of the following pertain to compositions in standard order (A066099):
- Necklaces are A065609.
- Reversed necklaces are A333943.
- Co-necklaces are A333764.
- Reversed co-necklaces are A328595.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Aperiodic compositions are A328594.

Programs

  • Mathematica
    neckQ[q_]:=Length[q]==0||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    coneckQ[q_]:=Length[q]==0||Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[Reverse[#]]&&coneckQ[#]&]],{n,0,15}]

A334272 Number of sequences of length n that cover an initial interval of positive integers and are both a reversed necklace and a co-necklace.

Original entry on oeis.org

1, 1, 2, 4, 12, 43, 229, 1506, 12392, 120443
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2020

Keywords

Comments

A necklace is a finite sequence of positive integers that is lexicographically strictly less than or equal to any cyclic rotation. Co-necklace is defined similarly, except with strictly greater instead of strictly less.

Examples

			The a(1) = 1 through a(4) = 12 normal sequences:
  (1)  (1,1)  (1,1,1)  (1,1,1,1)
       (2,1)  (2,1,1)  (2,1,1,1)
              (2,2,1)  (2,1,2,1)
              (3,2,1)  (2,2,1,1)
                       (2,2,2,1)
                       (3,1,2,1)
                       (3,2,1,1)
                       (3,2,2,1)
                       (3,2,3,1)
                       (3,3,2,1)
                       (4,2,3,1)
                       (4,3,2,1)
		

Crossrefs

Dominates A334270 (the aperiodic case).
Compositions of this type are counted by A334271.
These compositions are ranked by A334273 (standard) and A334274 (binary).
Binary (or reversed binary) necklaces are counted by A000031.
Normal sequences are counted by A000670.
Necklace compositions are counted by A008965.
Normal Lyndon words are counted by A060223.
Normal necklaces are counted by A019536.
All of the following pertain to compositions in standard order (A066099):
- Necklaces are A065609.
- Reversed necklaces are A333943.
- Co-necklaces are A333764.
- Reversed co-necklaces are A328595.
- Lyndon words are A275692.
- Co-Lyndon words are A326774.
- Reversed Lyndon words are A334265.
- Reversed co-Lyndon words are A328596.
- Reversed Lyndon co-Lyndon compositions are A334266.
- Aperiodic compositions are A328594.

Programs

  • Mathematica
    neckQ[q_]:=Length[q]==0||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    coneckQ[q_]:=Length[q]==0||Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],neckQ[Reverse[#]]&&coneckQ[#]&]],{n,0,8}]

A328607 Numbers whose reversed binary expansion, without the most significant digit, is a necklace.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 26, 28, 30, 31, 32, 48, 52, 56, 58, 60, 62, 63, 64, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 192, 200, 208, 212, 216, 220, 224, 228, 232, 234, 236, 240, 244, 246, 248, 250, 252, 254, 255
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2019

Keywords

Comments

Offset is 0 to be consistent with A257250.
A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
    0:        0 ~ {}
    1:        1 ~ {1}
    2:       10 ~ {2}
    3:       11 ~ {1,2}
    4:      100 ~ {3}
    6:      110 ~ {2,3}
    7:      111 ~ {1,2,3}
    8:     1000 ~ {4}
   12:     1100 ~ {3,4}
   14:     1110 ~ {2,3,4}
   15:     1111 ~ {1,2,3,4}
   16:    10000 ~ {5}
   24:    11000 ~ {4,5}
   26:    11010 ~ {2,4,5}
   28:    11100 ~ {3,4,5}
   30:    11110 ~ {2,3,4,5}
   31:    11111 ~ {1,2,3,4,5}
   32:   100000 ~ {6}
   48:   110000 ~ {5,6}
   52:   110100 ~ {3,5,6}
		

Crossrefs

The dual non-reversed version is A257250.
The dual non-reversed version involving all digits is A065609.
The version involving all digits is A328595.
The non-reversed version is A328668.
Binary necklaces are A000031.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[0,100],#<=1||neckQ[Reverse[Rest[IntegerDigits[#,2]]]]&]
Previous Showing 21-30 of 43 results. Next