A333764 Numbers k such that the k-th composition in standard order is a co-necklace.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 47, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 85, 87, 91, 95, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140
Offset: 1
Keywords
Examples
The sequence together with the corresponding co-necklaces begins: 1: (1) 32: (6) 69: (4,2,1) 2: (2) 33: (5,1) 70: (4,1,2) 3: (1,1) 34: (4,2) 71: (4,1,1,1) 4: (3) 35: (4,1,1) 73: (3,3,1) 5: (2,1) 36: (3,3) 74: (3,2,2) 7: (1,1,1) 37: (3,2,1) 75: (3,2,1,1) 8: (4) 38: (3,1,2) 77: (3,1,2,1) 9: (3,1) 39: (3,1,1,1) 78: (3,1,1,2) 10: (2,2) 42: (2,2,2) 79: (3,1,1,1,1) 11: (2,1,1) 43: (2,2,1,1) 85: (2,2,2,1) 15: (1,1,1,1) 45: (2,1,2,1) 87: (2,2,1,1,1) 16: (5) 47: (2,1,1,1,1) 91: (2,1,2,1,1) 17: (4,1) 63: (1,1,1,1,1,1) 95: (2,1,1,1,1,1) 18: (3,2) 64: (7) 127: (1,1,1,1,1,1,1) 19: (3,1,1) 65: (6,1) 128: (8) 21: (2,2,1) 66: (5,2) 129: (7,1) 23: (2,1,1,1) 67: (5,1,1) 130: (6,2) 31: (1,1,1,1,1) 68: (4,3) 131: (6,1,1)
Crossrefs
The non-"co" version is A065609.
The reversed version is A328595.
Binary necklaces are A000031.
Necklace compositions are A008965.
Necklaces covering an initial interval are A019536.
Numbers whose prime signature is a necklace are A329138.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Reversed necklaces are A333943.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; coneckQ[q_]:=Array[OrderedQ[{RotateRight[q,#],q}]&,Length[q]-1,1,And]; Select[Range[100],coneckQ[stc[#]]&]
Comments