cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A085775 Numbers k such that (k / sum of digits of k) and (k+1 / sum of digits of k+1) are both prime.

Original entry on oeis.org

152, 803, 1016, 1853, 3031, 3032, 3438, 7361, 7542, 7587, 8226, 8337, 10095, 10278, 10307, 11354, 11646, 13116, 13117, 13881, 17153, 21434, 21906, 23412, 26221, 28824, 30254, 31112, 32166, 34218, 35513, 38322, 40335, 41058, 44373, 45380
Offset: 1

Views

Author

Jason Earls, Jul 23 2003

Keywords

Examples

			152 is a term since 152/(1+5+2) = 19 and 153/(1+5+3) = 17 are both prime.
		

Crossrefs

Subsequence of A001101 and A330927.

Programs

  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; Select[Range[50000], moranQ[#] && moranQ[#+1] &] (* Amiram Eldar, Apr 25 2020 *)

Extensions

Offset corrected by Amiram Eldar, Apr 25 2020

A364217 Numbers k such that k and k+1 are both Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 3, 8, 11, 14, 15, 27, 32, 42, 43, 44, 45, 51, 56, 75, 86, 87, 92, 95, 99, 104, 125, 128, 135, 144, 155, 171, 176, 182, 183, 195, 204, 264, 267, 275, 287, 305, 344, 363, 375, 387, 428, 444, 455, 474, 497, 512, 524, 535, 544, 545, 552, 555, 581, 605, 623, 639
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

A001045(2*n+1) = A007583(n) = (2^(2*n+1) + 1)/3 is a term for n >= 0, since its representation is 2*n 1's, so A364215(A001045(2*n+1)) = 1 divides A001045(2*n+1), and the representation of A001045(2*n+1) + 1 = (2^(2*n+1) + 4)/3 is max(2*n-1, 0) 0's between 2 1's, so A364215(A001045(2*n+1) + 1) = 2 which divides (2^(2*n+1) + 4)/3.

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {Divisible[k, DigitCount[m, 2, 1]]}]; While[m++; OddQ[IntegerExponent[m, 2]]]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecJacobsthalNiven[640, 2]
  • PARI
    lista(kmax, len) = {my(m = 1, c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), !(k % sumdigits(m, 2))); until(valuation(m, 2)%2 == 0, m++); if(vecsum(c) == len, print1(k-len+1, ", ")));}
    lista(640, 2)

A364380 Numbers k such that k and k+1 are both greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 20, 21, 26, 27, 32, 42, 43, 44, 45, 51, 56, 68, 75, 84, 85, 86, 87, 92, 99, 104, 105, 111, 115, 116, 125, 128, 135, 144, 155, 170, 171, 176, 182, 183, 195, 204, 213, 219, 224, 260, 264, 267, 275, 304, 305, 324, 329, 341, 344
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n), and the representation of A001045(n) + 1 is 2 if n <= 2 and otherwise n-3 0's between two 1's, so A265745(A001045(n) + 1) = 2 which divides A001045(n) + 1.

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {greedyJacobNivenQ[k]}]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecGreedyJN[350, 2] (* using the function greedyJacobNivenQ[n] from A364379 *)
  • PARI
    lista(kmax, len) = {my(c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), isA364379(k)); if(vecsum(c) == len, print1(k-len+1, ", ")));} \\ using the function isA364379(n) from A364379
    lista(350, 2)

A337076 Niven numbers (A005349) with a record gap to the next Niven number.

Original entry on oeis.org

1, 10, 12, 63, 72, 90, 288, 378, 558, 2889, 3784, 6480, 19872, 28971, 38772, 297864, 478764, 589860, 989867, 2879865, 9898956, 49989744, 88996914, 689988915, 879987906, 989888823, 2998895823, 6998899824, 8889999624, 8988988866, 9879997824, 18879988824, 286889989806
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2020

Keywords

Comments

The corresponding record gaps are 1, 2, 6, 7, 8, 10, 12, 14, 18, 23, 32, 36, 44, 45, 54, 60, 66, 72, 88, 90, 99, 108, 126, 135, 144, 150, 153, 192, 201, 234, 258, 276, 294, ...
Kennedy and Cooper (1984) proved that the asymptotic density of the Niven numbers is 0. Therefore, this sequence is infinite.
De Koninck and Doyon proved that for sufficiently large k the least number m such that the interval[m, m+k-1] does not contain any Niven numbers is < (100*(k+2))^(k+3).

Examples

			10 is a term since it is a Niven number, and the next Niven number is 12, with a gap 12 - 10 = 2, which is a record, since all the numbers below 10 are also Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[nivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^6}]; s

A381582 Numbers k such that k and k+1 are both terms in A381581.

Original entry on oeis.org

1, 2, 3, 20, 21, 27, 44, 55, 56, 57, 75, 95, 110, 111, 115, 152, 175, 207, 264, 287, 291, 304, 305, 344, 364, 365, 377, 380, 395, 398, 399, 404, 425, 435, 455, 534, 584, 605, 815, 846, 847, 864, 888, 930, 987, 992, 1004, 1011, 1024, 1025, 1064, 1084, 1085, 1145, 1182
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

If k is not divisible by 3 (A001651), then A001906(k) = Fibonacci(2*k) is a term.

Examples

			1 is a term since A291711(1) = 1 divides 1 and A291711(2) = 2 divides 2.
20 is a term since A291711(20) = 4 divides 20 and A291711(21) = 1 divides 21.
		

Crossrefs

Subsequence of A381581.
Subsequences: A381583, A381584, A381585.
Similar sequences: A328209, A330927, A330931, A351720.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := q[n] = Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2; m -= 2*f[k], s++; m -= f[k]]]; Divisible[n, s]]; Select[Range[1200], q[#] && q[#+1] &]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    is1(n) = {my(s = 0, m = n, k); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2; m -= 2*f(k), s++; m -= f(k))); !(n % s);}
    list(lim) = {my(q1 = is1(1), q2); for(k = 2, lim, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}

A331089 Positive numbers k such that -k and -(k + 1) are both negative negaFibonacci-Niven numbers (A331088).

Original entry on oeis.org

1, 2, 3, 15, 20, 21, 44, 50, 54, 55, 56, 57, 75, 104, 110, 111, 115, 128, 141, 152, 175, 207, 264, 291, 304, 308, 335, 351, 363, 376, 377, 380, 392, 398, 399, 435, 452, 455, 534, 584, 594, 605, 623, 654, 735, 740, 744, 753, 795, 804, 875, 884, 897, 924, 964, 968
Offset: 1

Views

Author

Amiram Eldar, Jan 08 2020

Keywords

Comments

The Fibonacci numbers F(6*k + 2) and F(6*k + 4) are terms.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]];
    f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i];
    negaFibTermsNum[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 1; k -= Fibonacci[-i]]; s];
    negFibQ[n_] := Divisible[n, negaFibTermsNum[-n]];
    nConsec = 2; neg = negFibQ /@ Range[nConsec]; seq = {}; c = 0;
    k = nConsec+1; While[c < 55, If[And @@ neg, c++; AppendTo[seq, k - nConsec]];neg = Join[Rest[neg], {negFibQ[k]}]; k++]; seq

A364007 Numbers k such that k and k+1 are both Wythoff-Niven numbers (A364006).

Original entry on oeis.org

3, 6, 7, 20, 39, 51, 54, 55, 90, 135, 143, 294, 305, 321, 356, 365, 369, 374, 375, 376, 784, 800, 924, 978, 979, 980, 986, 1904, 1945, 1970, 2043, 2199, 2232, 2289, 2394, 2424, 2439, 2499, 2525, 2562, 2580, 2583, 4185, 4598, 4707, 4774, 4790, 4796, 4879, 5004
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

A035508(n) = Fibonacci(2*n+2) - 1 is a term for n >= 2 since A135818(Fibonacci(2*n+2) - 1) = A135818(Fibonacci(2*n+2)) = 1.

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = wnQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {wnQ[k]}]; k++]; s]; seq[50, 2] (* using the function wnQ[n] from A364006 *)

A364124 Numbers k such that k and k+1 are both Stolarsky-Niven numbers (A364123).

Original entry on oeis.org

8, 56, 84, 159, 195, 224, 384, 399, 405, 995, 1140, 1224, 1245, 1295, 1309, 1419, 1420, 1455, 1474, 1507, 2585, 2597, 2600, 2680, 2681, 2727, 2744, 2750, 2799, 2855, 3122, 3311, 3339, 3345, 3618, 3707, 3795, 4004, 6770, 6774, 6984, 6985, 7014, 7074, 7154, 7405
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[count_, nConsec_] := Module[{cn = stolNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {stolNivQ[k]}]; k++]; s]; seq[50, 2] (* using the function stolNivQ[n] from A364123 *)
  • PARI
    lista(count, nConsec) = {my(cn = vector(nConsec, i, isStolNivQ(i)), c = 0, k = nConsec + 1); while(c < count, if(vecsum(cn) == nConsec, c++; print1(k-nConsec, ", ")); cn = concat(vecextract(cn, "^1"), isStolNivQ(k)); k++);} \\ using the function isA364123(n) from A364123
    lista(50, 2)

A338514 Numbers k such that k and k+1 are both divisible by the total binary weight of their divisors (A093653).

Original entry on oeis.org

1, 2, 54, 2119, 11100, 13727, 14382, 15799, 16399, 20159, 20950, 33421, 34617, 36328, 36396, 39400, 42198, 42438, 42650, 46253, 46873, 50370, 55368, 56600, 58793, 67013, 67320, 69023, 72325, 76057, 86393, 90781, 92906, 93216, 105909, 132088, 134028, 134823, 140466
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2020

Keywords

Comments

Numbers k such that k and k+1 are both in A093705, or, equivalently, k is divisible by A093653(k) and k+1 is divisible by A093653(k+1).

Examples

			1 is a term since 1 and 2 are both terms of A093705.
		

Crossrefs

Similar sequences: A330927, A330931, A334345, A338452.

Programs

  • Mathematica
    divQ[n_] := Divisible[n, DivisorSum[n, DigitCount[#, 2, 1] &]]; q1 = divQ[1]; Reap[Do[q2 = divQ[n]; If[q1 && q2, Sow[n - 1]]; q1 = q2, {n, 2, 10^5}]][[2, 1]]
    SequencePosition[Table[If[Divisible[n,Total[DigitCount[Divisors[n],2,1]]],1,0],{n,150000}],{1,1}][[All,1]] (* Harvey P. Dale, Jun 14 2022 *)

A331821 Positive numbers k such that -k and -(k + 1) are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 3, 8, 9, 15, 24, 27, 32, 33, 39, 54, 55, 63, 77, 111, 114, 115, 123, 128, 129, 135, 144, 159, 174, 175, 203, 234, 235, 245, 255, 264, 294, 295, 329, 370, 371, 384, 413, 414, 415, 444, 447, 474, 475, 495, 504, 507, 512, 513, 519, 534, 535, 543, 580, 581, 624
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both -8 and -(8 + 1) = -9 are negabinary-Niven numbers: A039724(-8) = 1000 and 1 + 0 + 0 + 0 = 1 is a divisor of 8, and A039724(-9) = 1011 and 1 + 0 + 1 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s
Previous Showing 21-30 of 31 results. Next