cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A331785 Lexicographically earliest sequence containing 1 and all positive integers with exactly one prime index already in the sequence, counting multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 11, 14, 21, 26, 31, 34, 35, 38, 39, 43, 46, 51, 57, 58, 65, 69, 73, 74, 77, 82, 85, 87, 94, 95, 98, 101, 106, 111, 115, 118, 122, 123, 127, 134, 139, 141, 142, 143, 145, 147, 149, 158, 159, 163, 166, 167, 177, 178, 182, 183, 185, 187, 191, 194, 199
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}         73: {21}       142: {1,20}     205: {3,13}
    2: {1}        74: {1,12}     143: {5,6}      206: {1,27}
    3: {2}        77: {4,5}      145: {3,10}     209: {5,8}
    5: {3}        82: {1,13}     147: {2,4,4}    213: {2,20}
   11: {5}        85: {3,7}      149: {35}       214: {1,28}
   14: {1,4}      87: {2,10}     158: {1,22}     217: {4,11}
   21: {2,4}      94: {1,15}     159: {2,16}     218: {1,29}
   26: {1,6}      95: {3,8}      163: {38}       226: {1,30}
   31: {11}       98: {1,4,4}    166: {1,23}     233: {51}
   34: {1,7}     101: {26}       167: {39}       235: {3,15}
   35: {3,4}     106: {1,16}     177: {2,17}     237: {2,22}
   38: {1,8}     111: {2,12}     178: {1,24}     238: {1,4,7}
   39: {2,6}     115: {3,9}      182: {1,4,6}    245: {3,4,4}
   43: {14}      118: {1,17}     183: {2,18}     249: {2,23}
   46: {1,9}     122: {1,18}     185: {3,12}     253: {5,9}
   51: {2,7}     123: {2,13}     187: {5,7}      262: {1,32}
   57: {2,8}     127: {31}       191: {43}       265: {3,16}
   58: {1,10}    134: {1,19}     194: {1,25}     266: {1,4,8}
   65: {3,6}     139: {34}       199: {46}       267: {2,24}
   69: {2,9}     141: {2,15}     201: {2,19}     269: {57}
For example, the prime indices of 77 are {4,5}, of which only 5 is in the sequence, so 77 is in the sequence.
		

Crossrefs

Closed under A000040.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with at most one distinct prime index in S are A331912.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aQ[n_]:=n==1||Length[Select[primeMS[n],aQ]]==1;
    Select[Range[100],aQ]

A331913 Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 26, 27, 31, 32, 39, 49, 52, 53, 58, 59, 64, 65, 67, 74, 81, 82, 83, 86, 87, 91, 94, 97, 101, 103, 104, 111, 116, 117, 121, 122, 123, 125, 127, 128, 129, 131, 141, 142, 143, 145, 146, 148, 158, 164, 167, 172, 178
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}          116: {1,1,10}
    2: {1}             53: {16}             117: {2,2,6}
    3: {2}             58: {1,10}           121: {5,5}
    4: {1,1}           59: {17}             122: {1,18}
    5: {3}             64: {1,1,1,1,1,1}    123: {2,13}
    7: {4}             65: {3,6}            125: {3,3,3}
    8: {1,1,1}         67: {19}             127: {31}
    9: {2,2}           74: {1,12}           128: {1,1,1,1,1,1,1}
   11: {5}             81: {2,2,2,2}        129: {2,14}
   16: {1,1,1,1}       82: {1,13}           131: {32}
   17: {7}             83: {23}             141: {2,15}
   19: {8}             86: {1,14}           142: {1,20}
   23: {9}             87: {2,10}           143: {5,6}
   25: {3,3}           91: {4,6}            145: {3,10}
   26: {1,6}           94: {1,15}           146: {1,21}
   27: {2,2,2}         97: {25}             148: {1,1,12}
   31: {11}           101: {26}             158: {1,22}
   32: {1,1,1,1,1}    103: {27}             164: {1,1,13}
   39: {2,6}          104: {1,1,1,6}        167: {39}
   49: {4,4}          111: {2,12}           172: {1,1,14}
		

Crossrefs

Contains all prime powers A000961.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with exactly one prime index in S are A331785.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    aQ[n_]:=n==1||Length[Select[PrimePi/@First/@FactorInteger[n],aQ]]==1;
    Select[Range[200],aQ]

A331937 a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).

Original entry on oeis.org

1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted identity trees. A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. It is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. In an identity tree, the branches of any given vertex are all distinct. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of terms together with their associated trees begins:
     1: o
     2: (o)
     6: (o(o))
    26: (o(o(o)))
   202: (o(o(o(o))))
  2462: (o(o(o(o(o)))))
		

Crossrefs

The semi-identity tree version is A331681.
Not requiring an identity tree gives A331873.
Not requiring local disjointness gives A331963.
Not requiring lone-child-avoidance gives A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding).

Extensions

a(14)-a(15) from Giovanni Resta, Feb 10 2020

A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 21, 24, 26, 28, 32, 38, 39, 42, 48, 52, 56, 57, 64, 74, 76, 78, 84, 86, 91, 96, 104, 106, 111, 112, 114, 128, 129, 133, 146, 148, 152, 156, 159, 168, 172, 178, 182, 192, 202, 208, 212, 214, 219, 222, 224, 228, 247, 256, 258, 259, 262
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all numbers that can be written as a power of two (other than 2) times a squarefree number whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  48: (oooo(o))
  52: (oo(o(o)))
  56: (ooo(oo))
  57: ((o)(ooo))
The sequence of terms together with their prime indices begins:
    1: {}              64: {1,1,1,1,1,1}      159: {2,16}
    2: {1}             74: {1,12}             168: {1,1,1,2,4}
    4: {1,1}           76: {1,1,8}            172: {1,1,14}
    6: {1,2}           78: {1,2,6}            178: {1,24}
    8: {1,1,1}         84: {1,1,2,4}          182: {1,4,6}
   12: {1,1,2}         86: {1,14}             192: {1,1,1,1,1,1,2}
   14: {1,4}           91: {4,6}              202: {1,26}
   16: {1,1,1,1}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   21: {2,4}          104: {1,1,1,6}          212: {1,1,16}
   24: {1,1,1,2}      106: {1,16}             214: {1,28}
   26: {1,6}          111: {2,12}             219: {2,21}
   28: {1,1,4}        112: {1,1,1,1,4}        222: {1,2,12}
   32: {1,1,1,1,1}    114: {1,2,8}            224: {1,1,1,1,1,4}
   38: {1,8}          128: {1,1,1,1,1,1,1}    228: {1,1,2,8}
   39: {2,6}          129: {2,14}             247: {6,8}
   42: {1,2,4}        133: {4,8}              256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    146: {1,21}             258: {1,2,14}
   52: {1,1,6}        148: {1,1,12}           259: {4,12}
   56: {1,1,1,4}      152: {1,1,1,8}          262: {1,32}
   57: {2,8}          156: {1,1,2,6}          266: {1,4,8}
		

Crossrefs

The locally disjoint version is A331681.
The enumeration of these trees by vertices is A331993.
Semi-identity trees are A306200.
MG-numbers of rooted identity trees are A276625.
MG-numbers of lone-child-avoiding rooted identity trees are {1}.
MG-numbers of lone-child-avoiding rooted trees are A291636.
MG-numbers of semi-identity trees are A306202.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.
MG-numbers of semi-lone-child-avoiding rooted identity trees are A331963.
MG-numbers of lone-child-avoiding rooted semi-identity trees are A331965.

Programs

  • Mathematica
    scsiQ[n_]:=n==1||n==2||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@scsiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],scsiQ]

Formula

Intersection of A306202 and A331935.
Previous Showing 11-14 of 14 results.