A332125
a(n) = 2*(10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
5, 252, 22522, 2225222, 222252222, 22222522222, 2222225222222, 222222252222222, 22222222522222222, 2222222225222222222, 222222222252222222222, 22222222222522222222222, 2222222222225222222222222, 222222222222252222222222222, 22222222222222522222222222222, 2222222222222225222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332125 := n -> 2*(10^(2*n+1)-1)/9+3*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332125(n)=10^(n*2+1)\9*2+3*10^n}, [0..15])
-
def A332125(n): return 10**(n*2+1)//9*2+3*10**n
A332126
a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
A332127
a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
-
def A332127(n): return 10**(n*2+1)//9*2+5*10**n
A332128
a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
-
def A332128(n): return 10**(n*2+1)//9*2+6*10**n
A332170
a(n) = 7*(10^(2n+1)-1)/9 - 7*10^n.
Original entry on oeis.org
0, 707, 77077, 7770777, 777707777, 77777077777, 7777770777777, 777777707777777, 77777777077777777, 7777777770777777777, 777777777707777777777, 77777777777077777777777, 7777777777770777777777777, 777777777777707777777777777, 77777777777777077777777777777, 7777777777777770777777777777777
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332171 ..
A332179 (variants with different middle digit 1, ..., 9).
-
A332170 := n -> 7*(10^(2*n+1)-1)/9-7*10^n;
-
Array[7 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332170(n)=(10^(n*2+1)\9-10^n)*7}, [0..15])
-
def A332170(n): return (10**(n*2+1)//9-10^n)*7