A332183
a(n) = 8*(10^(2n+1)-1)/9 - 5*10^n.
Original entry on oeis.org
3, 838, 88388, 8883888, 888838888, 88888388888, 8888883888888, 888888838888888, 88888888388888888, 8888888883888888888, 888888888838888888888, 88888888888388888888888, 8888888888883888888888888, 888888888888838888888888888, 88888888888888388888888888888, 8888888888888883888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332183 := n -> 8*(10^(2*n+1)-1)/9-5*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
-
apply( {A332183(n)=10^(n*2+1)\9*8-5*10^n}, [0..15])
-
def A332183(n): return 10**(n*2+1)//9*8-5*10**n
A332184
a(n) = 8*(10^(2n+1)-1)/9 - 4*10^n.
Original entry on oeis.org
4, 848, 88488, 8884888, 888848888, 88888488888, 8888884888888, 888888848888888, 88888888488888888, 8888888884888888888, 888888888848888888888, 88888888888488888888888, 8888888888884888888888888, 888888888888848888888888888, 88888888888888488888888888888, 8888888888888884888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332184 := n -> 8*(10^(2*n+1)-1)/9-4*10^n;
-
Array[8 (10^(2 # + 1)-1)/9- 4*10^# &, 15, 0]
-
apply( {A332184(n)=10^(n*2+1)\9*8-4*10^n}, [0..15])
-
def A332184(n): return 10**(n*2+1)//9*8-4*10**n
A332185
a(n) = 8*(10^(2n+1)-1)/9 - 3*10^n.
Original entry on oeis.org
5, 858, 88588, 8885888, 888858888, 88888588888, 8888885888888, 888888858888888, 88888888588888888, 8888888885888888888, 888888888858888888888, 88888888888588888888888, 8888888888885888888888888, 888888888888858888888888888, 88888888888888588888888888888, 8888888888888885888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
Cf.
A332115 ..
A332195 (variants with different "wing" digit 1, ..., 9).
-
A332185 := n -> 8*(10^(2*n+1)-1)/9-3*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
-
apply( {A332185(n)=10^(n*2+1)\9*8-3*10^n}, [0..15])
-
def A332185(n): return 10**(n*2+1)//9*8-3*10**n
A332186
a(n) = 8*(10^(2n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
6, 868, 88688, 8886888, 888868888, 88888688888, 8888886888888, 888888868888888, 88888888688888888, 8888888886888888888, 888888888868888888888, 88888888888688888888888, 8888888888886888888888888, 888888888888868888888888888, 88888888888888688888888888888, 8888888888888886888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332180 ..
A332189 (variants with different middle digit 0, ..., 9).
-
A332186 := n -> 8*(10^(2*n+1)-1)/9-2*10^n;
-
Array[8 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{6,868,88688},20] (*or *) Table[FromDigits[Join[PadRight[ {},n,8],PadRight[ {6},n+1,8]]],{n,0,20}] (* Harvey P. Dale, May 30 2023 *)
-
apply( {A332186(n)=10^(n*2+1)\9*8-2*10^n}, [0..15])
-
def A332186(n): return 10**(n*2+1)//9*8-2*10**n