cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A333766 Maximum part of the n-th composition in standard order. a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 2, 2, 1, 5, 4, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 3, 4, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2020

Keywords

Comments

One plus the longest run of 0's in the binary expansion of n.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 100th composition in standard order is (1,3,3), so a(100) = 3.
		

Crossrefs

Positions of ones are A000225.
Positions of terms <= 2 are A003754.
The version for prime indices is A061395.
Positions of terms > 1 are A062289.
Positions of first appearances are A131577.
The minimum part is given by A333768.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Max@@stc[n]],{n,0,100}]

Formula

For n > 0, a(n) = A087117(n) + 1.

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A164894 Base-10 representation of the binary string formed by appending 10, 100, 1000, 10000, ..., etc., to 1.

Original entry on oeis.org

1, 6, 52, 840, 26896, 1721376, 220336192, 56406065280, 28879905423616, 29573023153783296, 60565551418948191232, 248076498612011791288320, 2032242676629600594233921536, 33296264013899376135928570454016, 1091051979207454757222107396637212672
Offset: 1

Views

Author

Gil Broussard, Aug 29 2009

Keywords

Comments

These numbers are half the sum of powers of 2 indexed by differences of a triangular number and each smaller triangular number (e.g., 21 - 15 = 6, 21 - 10 = 11, ..., 21 - 0 = 21).
This suggests another way to think about these numbers: consider the number triangle formed by the characteristic function of the triangular numbers (A010054), join together the first n rows (the very first row is row 0) as a single binary string and that gives the (n + 1)th term of this sequence. - Alonso del Arte, Nov 15 2013
Numbers k such that the k-th composition in standard order (row k of A066099) is an initial interval. - Gus Wiseman, Apr 02 2020

Examples

			a(1) = 1, also 1 in binary.
a(2) = 6, or 110 in binary.
a(3) = 52, or 110100 in binary.
a(4) = 840, or 1101001000 in binary.
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A225620.
The reversed version is A246534.
Standard composition numbers of permutations are A333218.
Standard composition numbers of strict increasing compositions are A333255.

Programs

  • Mathematica
    Table[Sum[2^((n^2 + n)/2 - (k^2 + k)/2 - 1), {k, 0, n - 1}], {n, 25}] (* Alonso del Arte, Nov 14 2013 *)
    Module[{nn=15,t},t=Table[10^n,{n,0,nn}];Table[FromDigits[Flatten[IntegerDigits/@Take[t,k]],2],{k,nn}]] (* Harvey P. Dale, Jan 16 2024 *)
  • Python
    def a(n): return int("".join("1"+"0"*i for i in range(n)), 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jul 05 2021
    
  • Python
    def A164894(n): return sum(1<<(k*((n<<1)-k-1)>>1)+n-1 for k in range(n)) # Chai Wah Wu, Jul 11 2025

Formula

a(n) = Sum_{k=0..n-1} 2^((n^2 + n)/2 - (k^2 + k)/2 - 1). - Alonso del Arte, Nov 15 2013
Intersection of A333255 and A333217. - Gus Wiseman, Apr 02 2020
a(n) = Sum_{k=0..n-1} 2^(k*(2*n-k-1)/2+n-1). - Chai Wah Wu, Jul 11 2025

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A345169 Numbers k such that the k-th composition in standard order is a non-alternating anti-run.

Original entry on oeis.org

37, 52, 69, 101, 104, 105, 133, 137, 150, 165, 180, 197, 200, 208, 209, 210, 261, 265, 274, 278, 300, 301, 308, 325, 328, 357, 360, 361, 389, 393, 400, 401, 406, 416, 417, 418, 421, 422, 436, 517, 521, 529, 530, 534, 549, 550, 556, 557, 564, 581, 600, 601, 613
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The sequence of terms together with their binary indices begins:
     37: (3,2,1)      210: (1,2,3,2)      400: (1,3,5)
     52: (1,2,3)      261: (6,2,1)        401: (1,3,4,1)
     69: (4,2,1)      265: (5,3,1)        406: (1,3,2,1,2)
    101: (1,3,2,1)    274: (4,3,2)        416: (1,2,6)
    104: (1,2,4)      278: (4,2,1,2)      417: (1,2,5,1)
    105: (1,2,3,1)    300: (3,2,1,3)      418: (1,2,4,2)
    133: (5,2,1)      301: (3,2,1,2,1)    421: (1,2,3,2,1)
    137: (4,3,1)      308: (3,1,2,3)      422: (1,2,3,1,2)
    150: (3,2,1,2)    325: (2,4,2,1)      436: (1,2,1,2,3)
    165: (2,3,2,1)    328: (2,3,4)        517: (7,2,1)
    180: (2,1,2,3)    357: (2,1,3,2,1)    521: (6,3,1)
    197: (1,4,2,1)    360: (2,1,2,4)      529: (5,4,1)
    200: (1,3,4)      361: (2,1,2,3,1)    530: (5,3,2)
    208: (1,2,5)      389: (1,5,2,1)      534: (5,2,1,2)
    209: (1,2,4,1)    393: (1,4,3,1)      549: (4,3,2,1)
		

Crossrefs

A version counting partitions is A345166, ranked by A345173.
These compositions are counted by A345195.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns (with twins: A344605).
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Anti-runs are A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
- Non-anti-runs are A348612.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Strictly increasing compositions (sets) are A333255.
- Strictly decreasing compositions (strict partitions) are A333256.
- Anti-runs are A333489.
- Alternating compositions are A345167.
- Non-Alternating compositions are A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[0,1000],sepQ[stc[#]]&&!wigQ[stc[#]]&]

Formula

Intersection of A345168 (non-alternating) and A333489 (anti-run).

A087117 Number of zeros in the longest string of consecutive zeros in the binary representation of n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 0, 3, 2, 1, 1, 2, 1, 1, 0, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 5, 4, 3, 3, 2, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

The following four statements are equivalent: a(n) = 0; n = 2^k - 1 for some k > 0; A087116(n) = 0; A023416(n) = 0.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(k) is the maximum part of this composition, minus one. The maximum part is A333766(k). - Gus Wiseman, Apr 09 2020

Crossrefs

Positions of zeros are A000225.
Positions of terms <= 1 are A003754.
Positions of terms > 0 are A062289.
Positions of first appearances are A131577.
The version for prime indices is A252735.
The proper maximum is A333766.
The version for minimum is A333767.
Maximum prime index is A061395.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Haskell
    import Data.List (unfoldr, group)
    a087117 0       = 1
    a087117 n
      | null $ zs n = 0
      | otherwise   = maximum $ map length $ zs n where
      zs = filter ((== 0) . head) . group .
           unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A087117 := proc(n)
        local d,l,zlen ;
        if n = 0 then
            return 1 ;
        end if;
        d := convert(n,base,2) ;
        for l from nops(d)-1 to 0 by -1 do
            zlen := [seq(0,i=1..l)] ;
            if verify(zlen,d,'sublist') then
                return l ;
            end if;
        end do:
        return 0 ;
    end proc; # R. J. Mathar, Nov 05 2012
  • Mathematica
    nz[n_]:=Max[Length/@Select[Split[IntegerDigits[n,2]],MemberQ[#,0]&]]; Array[nz,110,0]/.-\[Infinity]->0 (* Harvey P. Dale, Sep 05 2017 *)
  • PARI
    h(n)=if(n<2, return(0)); my(k=valuation(n,2)); if(k, max(h(n>>k), k), n++; n>>=valuation(n,2); h(n-1))
    a(n)=if(n,h(n),1) \\ Charles R Greathouse IV, Apr 06 2022

Formula

a(n) = max(A007814(n), a(A025480(n-1))) for n >= 2. - Robert Israel, Feb 19 2017
a(2n+1) = a(n) (n>=1); indeed, the binary form of 2n+1 consists of the binary form of n with an additional 1 at the end - Emeric Deutsch, Aug 18 2017
For n > 0, a(n) = A333766(n) - 1. - Gus Wiseman, Apr 09 2020

A333768 Minimum part of the n-th composition in standard order. a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 06 2020

Keywords

Comments

One plus the shortest run of 0's after a 1 in the binary expansion of n > 0.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 148th composition in standard order is (3,2,3), so a(148) = 2.
		

Crossrefs

Positions of first appearances (ignoring index 0) are A000079.
Positions of terms > 1 are A022340.
The version for prime indices is A055396.
The maximum part is given by A333766.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min@@stc[n]],{n,0,100}]

Formula

For n > 0, a(n) = A333767(n) + 1.

A124760 Number of rises for compositions in standard order.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A114994 seems to give the positions of zeros. - Antti Karttunen, Jul 09 2017
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. a(n) is one fewer than the number of maximal weakly decreasing runs in this composition. Alternatively, a(n) is the number of strict ascents in the same composition. For example, the weakly decreasing runs of the 1234567th composition are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so a(1234567) = 4 - 1 = 3. The 3 strict ascents together with the weak descents are: 3 >= 2 >= 1 < 2 >= 2 >= 1 < 2 < 5 >= 1 >= 1 >= 1. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; 2>=1>=1, so a(11) = 0.
The table starts:
  0
  0
  0 0
  0 0 1 0
  0 0 0 0 1 1 1 0
  0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0
  0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 0
		

Crossrefs

Cf. A066099, A124761, A124762, A124763, A124764, A011782 (row lengths), A045883 (row sums), A233249, A333213, A333380.
Compositions of n with k strict ascents are A238343.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768.
- Strictly decreasing runs are counted by A124769.
- Weakly increasing compositions are A225620.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Anti-runs are A333489.
- Runs-resistance is A333628.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Select[Partition[stc[n],2,1],Less@@#&]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)
  • PARI
    A066099row(n) = {my(v=vector(n), j=0, k=0); while(n>0, k++; if(n%2==1, v[j++]=k; k=0); n\=2);  vector(j, i, v[j-i+1]); } \\ Returns empty for n=0. - From code of Franklin T. Adams-Watters in A066099.
    A124760(n) = { my(v=A066099row(n), r=0); for(i=2,length(v),r += (v[i]>v[i-1])); (r); }; \\ Antti Karttunen, Jul 09 2017

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i = 1 .. k-1} [b(i+1) > b(i)], where [ ] is Iverson bracket, giving in this case 1 only if b(i+1) > b(i), and 0 otherwise. - Formula clarified by Antti Karttunen, Jul 10 2017
For n > 0, a(n) = A124765(n) - 1. - Gus Wiseman, Apr 08 2020

A333253 Lengths of maximal strictly increasing subsequences in the sequence of prime gaps (A001223).

Original entry on oeis.org

2, 2, 2, 3, 2, 1, 3, 1, 2, 1, 2, 3, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 1, 3, 3, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3, 3, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.

Examples

			The prime gaps split into the following strictly increasing subsequences: (1,2), (2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6), (6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ...
		

Crossrefs

The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The unequal version is A333216.
First differences of A333231 (if its first term is 0).
The strictly decreasing version is A333252.
The equal version is A333254.
Prime gaps are A001223.
Strictly increasing runs of compositions in standard order are A124768.
Positions of strict ascents in the sequence of prime gaps are A258025.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1<#2&]//Most

Formula

Partial sums are A333231. The partial sum up to but not including the n-th one is A333382(n).
Previous Showing 11-20 of 46 results. Next