cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A334502 Eventual period of a single cell in rule 62 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 3, 14, 3, 3, 3, 3, 3, 26, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 13 2020: (Start)
G.f.: x*(1 + 7*x^3 - 3*x^4 - 2*x^5 + 11*x^6 - 11*x^7 + 23*x^12 - 23*x^13) / (1 - x).
a(n) = a(n-1) for n>14.
(End)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334505 Eventual period of a single cell in rule 169 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 2, 1, 2, 15, 1, 49, 15, 54, 205, 176, 1, 403, 441, 450, 2688, 2533, 216, 13471, 5240, 798, 14344, 9108, 1, 3175, 3315, 3402, 28518, 504252, 1800, 2228621, 473792, 941952, 2533, 4485250, 864, 7065594, 646, 357084, 132961360, 200241868, 3192, 2825692, 355342152
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(15) from Jinyuan Wang, May 09 2020
a(16)-a(18) from Vaclav Kotesovec, May 10 2020
More terms from Bert Dobbelaere, May 11 2020

A334512 Eventual period of a single cell in rule 105 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 6, 2, 14, 4, 14, 6, 62, 2, 42, 14, 30, 8, 30, 14, 1022, 12, 126, 62, 4094, 4, 2046, 42, 1022, 28, 32766, 30, 62, 16, 62, 30, 8190, 28, 58254, 1022, 8190, 24, 2046, 126, 254, 124, 8190, 4094, 16777214, 8, 4194302, 2046, 510, 84, 134217726, 1022, 2097150, 56, 1022, 32766
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(20) from Jinyuan Wang, May 09 2020
a(21)-a(28) from Vaclav Kotesovec, May 10 2020
More terms from Bert Dobbelaere, May 11 2020

A334514 Eventual period of a single cell in rule 107 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 3, 2, 15, 2, 28, 2, 36, 20, 11, 12, 117, 28, 60, 8, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60, 244, 124
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x + 3*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 22*x^6 - 2*x^7 + 8*x^8 + 18*x^9 - 42*x^10 + 10*x^11 + 60*x^12 - 10*x^13 + 66*x^14 - 14*x^15 - 130*x^16 - 33*x^18 + 16*x^19 + 65*x^20 - 8*x^23) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>24.
(End)

Extensions

More terms from Jinyuan Wang, May 09 2020

A334501 Eventual period of a single cell in rule 190 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 4, 5, 6, 7, 4, 9, 10, 11, 4, 13, 14, 15, 4, 17, 18, 19, 4, 21, 22, 23, 4, 25, 26, 27, 4, 29, 30, 31, 4, 33, 34, 35, 4, 37, 38, 39, 4, 41, 42, 43, 4, 45, 46, 47, 4, 49, 50, 51, 4, 53, 54, 55, 4, 57, 58, 59, 4, 61, 62, 63, 4, 65, 66, 67, 4, 69, 70
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(1 + x + x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 5*x^6 - 4*x^7 - x^9 - 2*x^10) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>8.
(End)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334503 Eventual period of a single cell in rule 131 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 3, 8, 3, 3, 14, 16, 3, 20, 3, 3, 3, 3, 3, 32, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 13 2020: (Start)
G.f.: x*(1 + 2*x^2 + 5*x^3 - 5*x^4 + 11*x^6 + 2*x^7 - 13*x^8 + 17*x^9 - 17*x^10 + 29*x^15 - 29*x^16) / (1 - x).
a(n) = a(n-1) for n>17.
(End)

Extensions

More terms from Jinyuan Wang, May 09 2020

A334509 Eventual period of a single cell in rule 41 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 15, 2, 28, 8, 36, 20, 44, 12, 52, 28, 60, 16, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60, 244, 124
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.

Crossrefs

Programs

  • Mathematica
    Table[-Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[41], Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]],{n,62}] (* Stefano Spezia, Oct 04 2021, after Ben Branman in A180001 *)

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x + 2*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 24*x^6 + 4*x^7 + 8*x^8 + 18*x^9 - 10*x^10 - 2*x^11 - 5*x^12 - 10*x^13) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n > 14. (End)
Conjecture: a(n) = n*A176895(n) for n > 6. - Stefano Spezia, Oct 03 2021

Extensions

More terms from Jinyuan Wang, May 09 2020

A334510 Eventual period of a single cell in rule 73 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 6, 2, 8, 8, 2, 2, 18, 18, 10, 20, 28, 28, 16, 26, 24, 24, 26, 36, 44, 44, 20, 106, 14, 14, 22, 54, 222, 222, 38, 48, 48, 48, 32, 80, 92, 92, 178, 156, 162, 162, 10, 74, 716, 716, 26, 594, 166, 166, 1212, 466, 514, 514, 130, 440, 86, 86, 742
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

More terms from Jinyuan Wang, May 09 2020

A334511 Eventual period of a single cell in rule 9 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 2, 2, 2, 9, 5, 12, 18, 5, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 + 2*x - 2*x^2 - 2*x^3 + 7*x^5 + 3*x^6 - 4*x^7 + 10*x^8 - 10*x^9 - 9*x^10 + 14*x^11 - 5*x^13) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>14.
(End)
Conjecture: a(n) = (3 - (-1)^n)*n/2 for n > 10. - Stefano Spezia, Sep 11 2021

Extensions

More terms from Jinyuan Wang, May 09 2020

A334513 Eventual period of a single cell in rule 25 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 3, 2, 15, 15, 21, 16, 9, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Formula

Conjectures from Colin Barker, May 09 2020: (Start)
G.f.: x*(2 - 2*x + x^2 - 2*x^3 + 14*x^4 - 13*x^5 + 6*x^6 - 11*x^7 - 2*x^8 + 18*x^9 - 9*x^10) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>11.
(End)
Conjecture: for n>=10, a(n) = 2*n. - Vaclav Kotesovec, May 10 2020

Extensions

More terms from Jinyuan Wang, May 09 2020
Previous Showing 11-20 of 20 results.