cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A339870 Composite numbers k of the form 4u+1 for which the odd part of phi(k) divides k-1.

Original entry on oeis.org

85, 561, 1105, 1261, 1285, 2465, 4369, 6601, 8245, 8481, 9061, 9605, 10585, 16405, 16705, 17733, 18721, 19669, 21845, 23001, 28645, 30889, 38165, 42121, 43165, 46657, 54741, 56797, 57205, 62745, 65365, 74593, 78013, 83665, 88561, 91001, 106141, 117181, 124645, 126701, 134521, 136981, 141661, 162401, 171205, 176437
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

From Antti Karttunen, Dec 26 2020: (Start)
Equally, squarefree composite numbers k of the form 4u+1 for which A336466(k) divides k-1. This follows because on squarefree n, A336466(n) = A053575(n).
No common terms with A016105, because 4xy + 2(x+y) + 1 does not divide 4xy + 3(x+y) + 2 for any distinct x, y >= 0 (where 4x+3 and 4y+3 are the two prime factors of Blum integers).
This can also seen by another way: If this sequence contained any Blum integers, then, because A016105 is a subsequence of A339817, we would have found a composite number n satisfying Lehmer's totient problem y * phi(n) = n-1, for some integer y > 1. But Lehmer proved that such solutions should have at least 7 distinct prime factors, while Blum integers have only two.
Moreover, it seems that none of the terms of A167181 may occur here, and a few of A137409 (i.e., of A125667). See A339875 for those terms.
(End)

Examples

			85 = 4*21 + 1 = 5*17, thus phi(85) = 4*16 = 64, the odd part of which is A000265(64) = 1, which certainly divides 85-1, therefore 85 is included as a term.
561 = 4*140 + 1 = 3*11*17, thus phi(561) = 2*10*16 = 320, the odd part of which is A000265(320) = 5, which divides 560, therefore 561 is included.
		

Crossrefs

Subsequence of A005117.
Intersection of A091113 and A339880.
Cf. A339875 (a subsequence).
Cf. also comments in A339817.

Programs

  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[4*Range[45000] + 1, CompositeQ[#] && Divisible[# - 1, odd[EulerPhi[#]]] &] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339870(n) = ((n>1)&&!isprime(n)&&(1==(n%4))&&!((n-1)%A000265(eulerphi(n))));

A339971 Odd part of A339821(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 15, 15, 15, 15, 3, 3, 3, 3, 9, 9, 9, 9, 15, 15, 15, 15, 45, 45, 45, 45, 1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 15, 15, 15, 15, 3, 3, 3, 3, 9, 9, 9, 9, 15, 15, 15, 15, 45, 45, 45, 45, 9, 9, 9, 9, 27, 27, 27, 27, 45, 45, 45, 45, 135, 135, 135, 135, 27, 27, 27, 27, 81, 81, 81, 81, 135
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339971(n) = { my(m=1, p=2); while(n>0, p = nextprime(1+p); if(n%2, m *= A000265(p-1)); n >>= 1); (m); };

Formula

If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A057023(e1) * A057023(e2) * ... * A057023(ek).
a(n) = A339821(n) / A000079(A339822(n)).

A336396 a(n) = A329697(n) - A087436(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 0, 1, 1, 2, 0, 0, 1, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 3, 1, 0, 2, 3, 0, 2, 0, 0, 1, 2, 0, 1, 1, 2, 2, 3, 0, 2, 2, 1, 0, 1, 1, 3, 0, 2, 1, 3, 0, 2, 2, 0, 2, 2, 1, 3, 0, 0, 1, 2, 1, 0, 3, 2, 1, 2, 0, 2, 2, 2, 3, 2, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 24 2020

Keywords

Comments

Totally additive because both A087436 and A329697 are.

Crossrefs

Programs

Formula

a(n) = A329697(n) - A087436(n).
a(n) = A329697(A336466(n)).
a(n) = A336469(n) - A046660(A000265(n)).
For all n >= 1, a(n) <= A336118(n).

A350067 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A342666(n), A350063(n)] for n > 1, with f(1) = 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 5, 2, 6, 2, 3, 3, 7, 2, 4, 2, 8, 5, 9, 2, 10, 3, 11, 4, 11, 2, 11, 2, 12, 3, 13, 3, 14, 2, 3, 9, 11, 2, 8, 2, 15, 6, 16, 2, 17, 3, 5, 11, 18, 2, 19, 5, 20, 13, 21, 2, 22, 2, 23, 8, 24, 3, 25, 2, 26, 3, 6, 2, 9, 2, 27, 4, 28, 3, 26, 2, 29, 7, 30, 2, 31, 9, 32, 16, 33, 2, 31, 5, 34, 21, 35
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A342666(n), A350063(n)], when assuming that A342666(1) = 0.
Restricted growth sequence transform of the function f(1) = 0, f(n) = A336470(A156552(n)) for n > 1.
For all i, j >= 1: A305897(i) = A305897(j) => a(i) = a(j) => A350065(i) = A350065(j).
For all i, j >= 2: a(i) = a(j) => A342651(i) = A342651(j).

Crossrefs

Programs

  • PARI
    up_to = 3003;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    Aux350067(n) = if(1==n,1,my(u=A000265(A156552(n))); [A046523(u),A336466(u)]);
    v350067 = rgs_transform(vector(up_to, n, Aux350067(n)));
    A350067(n) = v350067[n];

A339903 Fully multiplicative with a(p) = A000265(q-1), where q = A151800(p), the next prime > p.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 3, 1, 1, 5, 3, 1, 9, 1, 11, 3, 5, 3, 7, 1, 9, 1, 1, 5, 15, 3, 9, 1, 3, 9, 15, 1, 5, 11, 1, 3, 21, 5, 23, 3, 3, 7, 13, 1, 25, 9, 9, 1, 29, 1, 9, 5, 11, 15, 15, 3, 33, 9, 5, 1, 3, 3, 35, 9, 7, 15, 9, 1, 39, 5, 9, 11, 15, 1, 41, 3, 1, 21, 11, 5, 27, 23, 15, 3, 3, 3, 5, 7, 9, 13, 33, 1, 25, 25
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339903(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = nextprime(1+f[i,1])-1); A000265(factorback(f)));

Formula

For all squarefree numbers k, a(k) = A339904(k).

A366789 Fully multiplicative with a(p) = oddpart(primepi(p)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 5, 1, 3, 1, 3, 1, 7, 1, 1, 3, 1, 5, 9, 1, 9, 3, 1, 1, 5, 3, 11, 1, 5, 7, 3, 1, 3, 1, 3, 3, 13, 1, 7, 5, 3, 9, 15, 1, 1, 9, 7, 3, 1, 1, 15, 1, 1, 5, 17, 3, 9, 11, 1, 1, 9, 5, 19, 7, 9, 3, 5, 1, 21, 3, 9, 1, 5, 3, 11, 3, 1, 13, 23, 1, 21, 7, 5, 5, 3, 3, 3, 9, 11, 15, 3, 1, 25, 1, 5, 9
Offset: 1

Views

Author

Antti Karttunen, Oct 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[#/2^IntegerExponent[#, 2] &@ Apply[Times, PrimePi[#1]^#2 & @@@ FactorInteger[#]] &, 120, 2] (* Michael De Vlieger, Oct 23 2023 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A366789(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(primepi(f[k, 1]))^f[k, 2]); };

Formula

a(n) = A000265(A003963(n)).

A339974 Odd primes that do not occur as the greatest prime divisor of any such odd composite k for which the odd part of phi(k) divides k-1.

Original entry on oeis.org

3, 7, 11, 19, 31, 37, 59, 61, 83, 103, 107, 131
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2020

Keywords

Comments

Odd primes that do not occur as the greatest prime divisor (A006530) of any of the terms of A339880.
Naive way of computing (essentially an exhaustive search): apply A000523 to the terms of A339973, select unique values, add +2, and take the corresponding prime.
Questions: Is this sequence finite? If infinite, are there still only a finite number of 4k+1 primes (A002144) like 37 and 61?
a(13) >= 149, if it exists.

Examples

			Prime 127 is NOT a member, because there exists a squarefree composite number 10697881195 = 5*29*53*97*113*127, for which A053575(10697881195) = A336466(10697881195) = 120393, which is a divisor of 10697881195-1. Note that 10697881195 is a term of A339880, but not that of A339870.
		

Crossrefs

A365394 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365426(i) = A365426(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 4, 3, 8, 3, 9, 2, 8, 5, 10, 2, 10, 6, 11, 1, 12, 7, 7, 4, 13, 4, 14, 3, 15, 8, 16, 3, 16, 9, 17, 2, 13, 8, 18, 5, 19, 10, 20, 2, 18, 10, 21, 6, 21, 11, 6, 1, 22, 12, 12, 7, 23, 7, 24, 4, 25, 13, 26, 4, 26, 14, 27, 3, 25, 15, 28, 8, 29, 16, 30, 3, 28, 16, 31, 9, 31, 17
Offset: 0

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A365425(n), A365426(n)].
Restricted growth sequence transform of the function f(n) = A336470(A163511(n)).
For all i, j: a(i) = a(j) => A334204(i) = A334204(j).

Crossrefs

Cf. also A350067, A365395, A366792 (compare the scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    A365426(n) = A336466(A163511(n));
    A365394aux(n) = [A365425(n), A365426(n)];
    v365394 = rgs_transform(vector(1+up_to,n,A365394aux(n-1)));
    A365394(n) = v365394[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A359587 Fully multiplicative with a(p) = A008578(1+A329697(p)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 4, 1, 2, 4, 5, 2, 6, 3, 5, 2, 4, 3, 8, 3, 5, 4, 5, 1, 6, 2, 6, 4, 5, 5, 6, 2, 3, 6, 7, 3, 8, 5, 7, 2, 9, 4, 4, 3, 5, 8, 6, 3, 10, 5, 7, 4, 5, 5, 12, 1, 6, 6, 7, 2, 10, 6, 7, 4, 5, 5, 8, 5, 9, 6, 7, 2, 16, 3, 5, 6, 4, 7, 10, 3, 5, 8, 9, 5, 10, 7, 10, 2, 3, 9, 12, 4, 5, 4, 5, 3, 12
Offset: 1

Views

Author

Antti Karttunen, Jan 08 2023

Keywords

Crossrefs

Programs

  • PARI
    A008578(n) = if(1==n,1,prime(n-1));
    A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A359587(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 1] = A008578(1+A329697(f[i, 1]))); factorback(f); };

Formula

For n >= 1: (Start)
a(A000265(n)) = a(2*n) = a(n).
A001222(a(n)) = A087436(n),
A056239(a(n)) = A329697(n),
A318995(a(n)) = A336396(n) = A329697(A336466(n)).
(End)
Previous Showing 21-29 of 29 results.