cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A339901 a(n) = A339971(n) / gcd(A339809(2*n), A339971(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 15, 3, 5, 15, 1, 3, 3, 3, 1, 9, 9, 9, 15, 15, 5, 15, 9, 45, 5, 45, 1, 1, 1, 1, 3, 3, 1, 3, 5, 1, 5, 5, 5, 15, 15, 15, 3, 3, 1, 3, 9, 9, 3, 9, 1, 15, 15, 15, 15, 9, 45, 45, 1, 9, 9, 9, 9, 27, 27, 27, 45, 45, 5, 45, 135, 135, 45, 135, 9, 27, 27, 27, 3, 81, 81, 81, 135, 27, 45, 135, 405
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Compare also to the scatter plot of A339898.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339901(n) = { my(x=A019565(2*n), y=A000265(eulerphi(x))); y/gcd((x-1),y); };

Formula

a(n) = A339971(n) / A339899(n).
a(n) = A000265(A160595(A019565(2*n))).
a(n) = A340075(A019565(n)) = A340085(A019565(2*n)).

A053575 Odd part of phi(n): a(n) = A000265(A000010(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 3, 1, 1, 1, 3, 9, 1, 3, 5, 11, 1, 5, 3, 9, 3, 7, 1, 15, 1, 5, 1, 3, 3, 9, 9, 3, 1, 5, 3, 21, 5, 3, 11, 23, 1, 21, 5, 1, 3, 13, 9, 5, 3, 9, 7, 29, 1, 15, 15, 9, 1, 3, 5, 33, 1, 11, 3, 35, 3, 9, 9, 5, 9, 15, 3, 39, 1, 27, 5, 41, 3, 1, 21, 7, 5, 11, 3, 9, 11, 15, 23
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Comments

This is not necessarily the squarefree kernel. E.g., for n=19, phi(19)=18 is divisible by 9, an odd square. Values at which this kernel is 1 correspond to A003401 (polygons constructible with ruler and compass).
Multiplicative with a(2^e) = 1, a(p^e) = p^(e-1)*A000265(p-1). - Christian G. Bower, May 16 2005

Examples

			n = 70 = 2*5*7, phi(70) = 24 = 8*3, so the odd kernel of phi(70) is a(70)=3. [corrected by _Bob Selcoe_, Aug 22 2017]
From _Bob Selcoe_, Aug 22 2017: (Start)
a(89) = 88/8 = 11.
For n = 8820, 8820 = 2^2*3^2*5*7^2; S = 3*5*7 = 105, n" = 3^2*5*7^2 = 2205. a(3)*a(5)*a(7) = 1*1*3 = 3; a(8820) = 3*2205/105 = 63.
(End)
		

Crossrefs

Programs

  • Haskell
    a053575 = a000265 . a000010  -- Reinhard Zumkeller, Oct 09 2013
  • Maple
    a:= n-> (t-> t/2^padic[ordp](t, 2))(numtheory[phi](n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Apr 14 2020
  • Mathematica
    Array[NestWhile[Ceiling[#/2] &, EulerPhi@ #, EvenQ] &, 94] (* Michael De Vlieger, Aug 22 2017 *) (* or *)
    t=Array[EulerPhi,94]; t/2^IntegerExponent[t,2] (* Giovanni Resta, Aug 23 2017 *)
  • PARI
    a(n)=n=eulerphi(n);n>>valuation(n,2) \\ Charles R Greathouse IV, Mar 05 2013
    

Formula

From Bob Selcoe, Aug 22 2017: (Start)
Let n" be the odd part of n, S be the odd squarefree kernel of n and p_i {i = 1..z} be all the prime factors of S. Then the sequence can be constructed by the following:
a(1) = 1;
a(n) = (n-1)" when n is prime; and
a(n) = Product_{i = 1..z} a(p_i)*n"/S when n is composite (see Examples).
(End)
From Antti Karttunen, Dec 27 2020: (Start)
a(n) = A336466(n) for squarefree n (see A005117).
A336466(a(n)) = A336468(n), A329697(a(n)) = A336469(n) = A329697(n) - A005087(n).
(End)

A339898 a(n) = A019565(2n)-1 mod A000265(phi(A019565(2n))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 2, 0, 2, 4, 4, 1, 5, 9, 14, 0, 2, 1, 2, 0, 2, 4, 5, 7, 8, 9, 14, 10, 32, 9, 29, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 4, 4, 3, 11, 4, 14, 1, 2, 0, 2, 7, 5, 3, 2, 0, 2, 4, 14, 6, 20, 34, 14, 0, 2, 4, 5, 24, 20, 16, 23, 28, 41, 9, 29, 112, 68, 24, 74, 3, 11, 19, 5, 27, 2, 58, 14, 16, 50, 84, 119, 388, 356
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A339973 (positions of zeros).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339898(n) = { my(x=A019565(2*n)); ((x-1)%A000265(eulerphi(x))); };

Formula

a(n) = A339809(2*n) modulo A339971(n), where A339971(n) = A053575(A019565(2n)).

A339899 a(n) = gcd(A019565(2n)-1, A000265(phi(A019565(2n)))).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 15, 1, 1, 1, 3, 5, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 27, 1, 1, 1, 1, 5, 3, 1, 1, 1, 81, 1, 1, 1, 3, 1, 1, 1, 9, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339899(n) = { my(x=A019565(2*n)); gcd((x-1),A000265(eulerphi(x))); };

Formula

a(n) = gcd(A339809(2*n), A339971(n)), where A339971(n) = A053575(A019565(2n)).
a(n) = gcd(A339971(n), A339898(n)).
a(n) = A339971(n) / A339901(n).
a(n) = A000265(A049559(A019565(2*n))).

A339973 Numbers k for which A019565(2k)-1 is a multiple of A000265(phi(A019565(2k))).

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 16, 20, 32, 33, 34, 35, 38, 41, 50, 56, 64, 128, 176, 256, 259, 290, 512, 1024, 2048, 2056, 2081, 2089, 2096, 2180, 4096, 4130, 8192, 9218, 16384, 18436, 32768, 65536, 131072, 131140, 262144, 279552, 524288, 524308, 524546, 1048576, 1048736, 2097152, 4194304, 4194352, 4194420, 4196656, 4202499, 8388608
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Numbers k such that A339971(k) divides A339809(2k).
Union of {0}, A000079 and the terms of (1/2)*A048675(A339880(i)), for i >= 1, sorted into ascending order.

Crossrefs

Positions of zeros in A339898, and of ones in A339901.
Cf. A000079 (subsequence).
Cf. also A339816, A339906.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA339971(n) = { my(x=A019565(2*n)); !((x-1)%A000265(eulerphi(x))); };

A339970 a(n) = A329697(A019565(2n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6, 2, 3, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 7, 8, 1, 2, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 6, 7, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 8, 9, 5, 6, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 10, 11, 4, 5, 5, 6, 6, 7, 7, 8, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Dec 27 2020

Keywords

Crossrefs

Differs from A106486 for the first time at n=32, where a(32) = 1, while A106486(32) = 2.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A339970(n) = A329697(A019565(2*n));
    
  • PARI
    A339970(n) = { my(s=0, p=2); while(n>0, p = nextprime(1+p); if(n%2, s += A329697(p)); n >>= 1); (s); };

Formula

a(n) = A329697(A019565(2*n)) = A329697(A003961(A019565(n))).
a(n) = A329697(A339971(n)) + A000120(n).
If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A329697(A000040(e1)) + A329697(A000040(e2)) + ... + A329697(A000040(ek)).

A339972 Odd part of phi(A019565(8*n)).

Original entry on oeis.org

1, 3, 5, 15, 3, 9, 15, 45, 1, 3, 5, 15, 3, 9, 15, 45, 9, 27, 45, 135, 27, 81, 135, 405, 9, 27, 45, 135, 27, 81, 135, 405, 11, 33, 55, 165, 33, 99, 165, 495, 11, 33, 55, 165, 33, 99, 165, 495, 99, 297, 495, 1485, 297, 891, 1485, 4455, 99, 297, 495, 1485, 297, 891, 1485, 4455, 7, 21, 35, 105, 21, 63, 105, 315, 7, 21
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Comments

Compare also to the scatter plots of A339898 and A339901.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A339972(n) = { my(m=1, p=5); while(n>0, p = nextprime(1+p); if(n%2, m *= A000265(p-1)); n >>= 1); (m); };

Formula

If 16n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A057023(e1) * A057023(e2) * ... * A057023(ek).
a(n) = A339971(4*n) = A000265(A339821(4*n)) = A053575(A019565(8*n)).
Showing 1-7 of 7 results.