cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A227944 Number of iterations of "take odd part of phi" (A053575) to reach 1 from n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 1, 2, 3, 2, 2
Offset: 1

Views

Author

Max Alekseyev, Oct 03 2013

Keywords

Comments

a(n) >= A256757(n) - 1.

Examples

			a(18) = 2 because it takes two steps to reach 1 from 18: phi(18) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
a(19) = 3 because it takes three steps to reach 1 from 19: phi(19) = 18, the odd part of which is 9, and phi(9) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
		

Crossrefs

A variant of A049115: a(n) = A049115(n) unless n is a power of 2.

Programs

  • Haskell
    a227944 n = fst $
                until ((== 1) . snd) (\(i, x) -> (i + 1, a053575 x)) (0, n)
    -- Reinhard Zumkeller, Oct 09 2013
  • Mathematica
    oddPhi[n_] := Module[{phi = EulerPhi[n]}, phi/2^IntegerExponent[phi, 2]]; Table[Length[NestWhileList[oddPhi[#] &, n, # > 1 &]] - 1, {n, 100}] (* T. D. Noe, Oct 07 2013 *)

Formula

For n > 1, a(n) = a(A053575(n)) + 1.

A339869 Carmichael numbers k for which A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

561, 1105, 2465, 6601, 8911, 10585, 46657, 62745, 162401, 410041, 449065, 5148001, 5632705, 6313681, 6840001, 7207201, 11119105, 11921001, 19683001, 21584305, 26719701, 41298985, 55462177, 64774081, 67371265, 79411201, 83966401, 87318001, 99861985, 100427041, 172290241, 189941761, 484662529, 790623289, 809883361
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

Lehmer conjectured that the equation k * phi(n) = n - 1 (with k integer) has no solutions for any composite n (i.e., when k > 1). If this sequence has no common terms with A339818, then the conjecture certainly holds.

Crossrefs

Intersection of A002997 and A339880.
Complement of A340092 in A002997.
Cf. also A339818, A339878, A339909.

Programs

  • Mathematica
    carmichaels = Cases[Import["https://oeis.org/A002997/b002997.txt", "Table"], {, }][[;; , 2]]; oddPart[n_] := n/2^IntegerExponent[n, 2]; q[n_] := Divisible[n - 1, oddPart[EulerPhi[n]]]; Select[carmichaels, q] (* Amiram Eldar, Dec 26 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A002322(n) = lcm(znstar(n)[2]);
    isA339869(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&!((n-1)%A000265(eulerphi(n))));

A339880 Odd composite numbers k such that A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

15, 51, 85, 91, 255, 435, 451, 561, 595, 771, 1105, 1261, 1285, 1351, 1695, 2091, 2431, 2465, 3655, 3855, 4369, 4795, 5083, 5151, 5383, 6601, 6643, 6735, 7051, 8245, 8481, 8695, 8911, 8995, 9061, 9605, 10585, 11155, 13107, 15051, 15211, 16405, 16705, 17733, 18721, 19669, 20451, 21845, 22359, 23001, 26335, 28645
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2020

Keywords

Comments

No common terms with A016105. See A339870 for the reason. - Antti Karttunen, Dec 26 2020

Crossrefs

Subsequence of A005117 and of A339879, and of A340077.
Cf. A339869, A339870 (subsequences).
Cf. also A002997, A053576, A339817.

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339880(n) = (bitand(n,1)&&(n>1)&&!isprime(n)&&!((n-1)%A000265(eulerphi(n))));

A339879 Numbers k for which k-1 is a multiple of A053575(k) [the odd part of phi(k)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 23, 24, 28, 29, 30, 31, 32, 34, 37, 40, 41, 43, 47, 48, 51, 52, 53, 59, 60, 61, 64, 66, 67, 68, 70, 71, 73, 79, 80, 83, 85, 89, 91, 96, 97, 101, 102, 103, 107, 109, 112, 113, 120, 127, 128, 130, 131, 136, 137, 139, 149, 151, 157, 160, 163, 167, 170, 173, 176, 179
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2020

Keywords

Crossrefs

Subsequences: A000040, and A339880 (odd composite terms), A339869, A339870.
Cf. also comments in A339817.

Programs

A340077 Odd numbers k for which k-1 is a multiple of A053575(k) [the odd part of phi(k)].

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 71, 73, 79, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 255, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Comments

Sequence A003961(A340076(i)), i = 1.., sorted into ascending order. In other words, this sequence consists of such odd numbers k that A064989(k) is in A340076.

Crossrefs

Subsequence of A339879.
Subsequences: A065091, A339880 (composite terms), A339869, A339870 (and their further subsequences).

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA340077(n) = ((n%2)&&!((n-1)%A000265(eulerphi(n))));
    
  • PARI
    A064989(n) = { my(f=factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    isA340077(n) = ((n%2)&&(1==A340075(A064989(n)))); \\ Needs also code from A340075.

A340092 Carmichael numbers k for which A053575(k) [the odd part of phi] does not divide k-1.

Original entry on oeis.org

1729, 2821, 15841, 29341, 41041, 52633, 63973, 75361, 101101, 115921, 126217, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 488881, 512461, 530881, 552721, 656601, 658801, 670033, 748657, 825265, 838201, 852841, 997633, 1024651, 1033669, 1050985, 1082809, 1152271, 1193221, 1461241, 1569457
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Complement of A339869 in A002997.
Subsequence of A340091.

Programs

  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[Range[1, 10^6, 2], CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] && !Divisible[# - 1, odd @ EulerPhi[#]] &] (* Amiram Eldar, Dec 31 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    A002322(n) = lcm(znstar(n)[2]);
    isA340092(n) = ((n>1)&&!isprime(n)&&(!((n-1)%A002322(n)))&&(0<((n-1)%A000265(eulerphi(n)))));

A329697 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
Offset: 1

Views

Author

Ali Sada and Robert G. Wilson v, Feb 28 2020

Keywords

Comments

From Antti Karttunen, Apr 07 2020: (Start)
Also the least number of iterations of nondeterministic map k -> k-(k/p) needed to reach a power of 2, when any prime factor p of k can be used. The minimal length path to the nearest power of 2 (= 2^A064415(n)) is realized whenever one uses any of the A005087(k) distinct odd prime factors of the current k, at any step of the process. For example, this could be done by iterating with the map k -> k-(k/A078701(k)), i.e., by using the least odd prime factor of k (instead of the largest prime).
Proof: Viewing the prime factorization of changing k as a multiset ("bag") of primes, we see that liquefying any odd prime p with step p -> (p-1) brings at least one more 2 to the bag, while applying p -> (p-1) to any 2 just removes it from the bag, but gives nothing back. Thus the largest (and thus also the nearest) power of 2 is reached by eliminating - step by step - all odd primes from the bag, but none of 2's, and it doesn't matter in which order this is done.
The above implies also that the sequence is totally additive, which also follows because both A064097 and A064415 are. That A064097(n) = A329697(n) + A054725(n) for all n > 1 can be also seen by comparing the initial conditions and the recursion formulas of these three sequences.
For any n, A333787(n) is either the nearest power of 2 reached (= 2^A064415(n)), or occurs on some of the paths from n to there.
(End)
A003401 gives the numbers k where a(k) = A005087(k). See also A336477. - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is {12, 8}, taking 2 iterations to reach 8 = 2^3. So a(15) is 2.
From _Antti Karttunen_, Apr 07 2020: (Start)
Considering all possible paths from 15 to 1 nondeterministic map k -> k-(k/p), where p can be any prime factor of k, we obtain the following graph:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1.
It can be seen that there's also alternative route to 8 via 10 (with 10 = 15-(15/3), where 3 is not the largest prime factor of 15), but it's not any shorter than the route via 12.
(End)
		

Crossrefs

Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for positions of 0 .. 6 in this sequence, and also array A334100.
Cf. A334099 (a right inverse, positions of the first occurrence of each n).
Cf. A334091 (first differences), A335429 (partial sums).
Cf. also A331410 (analogous sequence when using the map k -> k + k/p), A334861, A335877 (their sums and differences), see also A335878 and A335884, A335885.

Programs

  • Mathematica
    a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, n, # != 2^IntegerExponent[#, 2] &] -1; Array[a, 100]
  • PARI
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 07 2020
    
  • PARI
    up_to = 2^24;
    A329697list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = if(!bitand(n,n-1),0,1+vecmin(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
    v329697 = A329697list(up_to);
    A329697(n) = v329697[n]; \\ Antti Karttunen, Apr 07 2020
    
  • PARI
    A329697(n) = if(n<=2,0, if(isprime(n), A329697(n-1)+1, my(f=factor(n)); (apply(A329697, f[, 1])~ * f[, 2]))); \\ Antti Karttunen, Apr 19 2020

Formula

From Antti Karttunen, Apr 07-19 2020: (Start)
a(1) = a(2) = 0; and for n > 2, a(p) = 1 + a(p-1) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [This is otherwise equal to the definition of A064097, except here we have a different initial condition, with a(2) = 0].
a(2n) = a(A000265(n)) = a(n).
a(p) = 1+a(p-1), for all odd primes p.
If A209229(n) == 1 [when n is a power of 2], a(n) = 0,
otherwise a(n) = 1 + a(n-A052126(n)) = 1 + a(A171462(n)).
Equivalently, for non-powers of 2, a(n) = 1 + a(n-(n/A078701(n))),
or equivalently, for non-powers of 2, a(n) = 1 + Min a(n - n/p), for p prime and dividing n.
a(n) = A064097(n) - A064415(n), or equally, a(n) = A064097(n) - A054725(n), for n > 1.
a(A019434(n)) = 1, a(A334092(n)) = 2, a(A334093(n)) = 3, etc. for all applicable n.
For all n >= 0, a(A334099(n)) = a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = a(257^n) = a(65537^n) = n.
a(A122111(n)) = A334107(n), a(A225546(n)) = A334109(n).
(End)
From Antti Karttunen, Mar 16 2021: (Start)
a(n) = a(A336466(n)) + A087436(n) = A336396(n) + A087436(n).
a(A053575(n)) = A336469(n) = a(n) - A005087(n).
a(A147545(n)) = A000120(A147545(n)) - 1.
(End)

A336466 Fully multiplicative with a(p) = A000265(p-1) for any prime p, where A000265(k) gives the odd part of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 3, 1, 1, 1, 1, 9, 1, 3, 5, 11, 1, 1, 3, 1, 3, 7, 1, 15, 1, 5, 1, 3, 1, 9, 9, 3, 1, 5, 3, 21, 5, 1, 11, 23, 1, 9, 1, 1, 3, 13, 1, 5, 3, 9, 7, 29, 1, 15, 15, 3, 1, 3, 5, 33, 1, 11, 3, 35, 1, 9, 9, 1, 9, 15, 3, 39, 1, 1, 5, 41, 3, 1, 21, 7, 5, 11, 1, 9, 11, 15, 23, 9, 1, 3, 9, 5, 1, 25, 1, 51, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2020

Keywords

Comments

For the comment here, we extend the definition of the second kind of Cunningham chain (see Wikipedia-article) so that also isolated primes for which neither (p+1)/2 nor 2p-1 is a prime are considered to be in singular chains, that is, in chains of the length one. If we replace one or more instances of any particular odd prime factor p in n with any odd prime q in such a chain, so that m = (q^k)*n / p^(e-k), where e is the exponent of p of n, and k <= e is the number of instances of p replaced with q, then it holds that a(m) = a(n), and by induction, the value stays invariant for any number of such replacements. Note also that A001222, but not necessarily A001221 will stay invariant in such changes.
For example, if some of the odd prime divisors p of n are in A005382, then replacing it with 2p-1 (i.e., the corresponding terms of A005383), gives a new number m, for which a(m) = a(n). And vice versa, the same is true for any of the prime divisors > 3 of n that are in A005383, then replacing any one of them with (p+1)/2 will not affect the result. For example, a(37*37*37) = a(19*37*73) = 729 as 37 is both in A005382 and in A005383.
a(n) = A053575(n) for squarefree n (A005117). - Antti Karttunen, Mar 16 2021

Crossrefs

Programs

  • Mathematica
    Array[Times @@ Map[If[# <= 2, 1, (# - 1)/2^IntegerExponent[# - 1, 2]] &, Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[#]]] &, 105] (* Michael De Vlieger, Jul 24 2020 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); };

Formula

a(n) = A000265(A003958(n)) = A000265(A333787(n)).
a(A000010(n)) = A336468(n) = a(A053575(n)).
A329697(a(n)) = A336396(n) = A329697(n) - A087436(n).
a(n) = A335915(n) / A336467(n). - Antti Karttunen, Mar 16 2021

A347385 Dedekind psi function applied to the odd part of n: a(n) = A001615(A000265(n)).

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 12, 6, 12, 4, 14, 8, 24, 1, 18, 12, 20, 6, 32, 12, 24, 4, 30, 14, 36, 8, 30, 24, 32, 1, 48, 18, 48, 12, 38, 20, 56, 6, 42, 32, 44, 12, 72, 24, 48, 4, 56, 30, 72, 14, 54, 36, 72, 8, 80, 30, 60, 24, 62, 32, 96, 1, 84, 48, 68, 18, 96, 48, 72, 12, 74, 38, 120, 20, 96, 56, 80, 6, 108, 42, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

Coincides with A000593 on A122132.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));

Formula

Multiplicative with a(2^e) = 1, a(p^e) = (p+1)*p^(e-1) for all odd primes p.
a(n) = A001615(A000265(n)).
a(n) = A206787(n) * A336651(n). - Antti Karttunen, Feb 11 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Nov 19 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s))*(4^s-2^(s+1))/(4^s-1). - Amiram Eldar, Jan 04 2023

A053574 Exponent of 2 in phi(n) where phi(n) = A000010(n).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 3, 3, 4, 1, 1, 3, 2, 1, 1, 3, 2, 2, 1, 2, 2, 3, 1, 4, 2, 4, 3, 2, 2, 1, 3, 4, 3, 2, 1, 2, 3, 1, 1, 4, 1, 2, 5, 3, 2, 1, 3, 3, 2, 2, 1, 4, 2, 1, 2, 5, 4, 2, 1, 5, 2, 3, 1, 3, 3, 2, 3, 2, 2, 3, 1, 5, 1, 3, 1, 3, 6, 1, 3, 3, 3, 3, 3, 2, 2, 1, 3, 5, 5, 1, 2, 3, 2, 5, 1, 4, 4, 2, 1, 2, 2, 3, 3, 4, 4, 2, 3, 3, 3, 1, 5, 5
Offset: 1

Views

Author

Labos Elemer, Jan 18 2000

Keywords

Examples

			For n = 513 = 27*19, phi(513) = 4*81 so exponent of 2 is 2, thus a(513) = 2.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Array[EulerPhi, 120], 2] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    vector(66,n,valuation(eulerphi(n),2)) \\ Joerg Arndt, Apr 22 2011

Formula

a(n) = A007814(A000010(n)).
A000010(n) = A053575(n) * 2^a(n). - Antti Karttunen, May 26 2017
Additive with a(2^e) = e-1, and a(p^e) = A007814(p-1) for an odd prime p. - Amiram Eldar, Sep 05 2023

Extensions

Data section extended to 120 terms by Antti Karttunen, May 26 2017
Showing 1-10 of 26 results. Next