A378040
Union of A377783(n) = least nonsquarefree number > prime(n).
Original entry on oeis.org
4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1
For prime-power instead of nonsquarefree we have
A345531, differences
A377703.
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A071403(n) =
A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
-
Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)
A378084
Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)).
Original entry on oeis.org
9, 25, 27, 28, 36, 45, 49, 50, 52, 56, 64, 76, 81, 88, 92, 96, 99, 100, 117, 120, 121, 124, 125, 126, 135, 136, 144, 147, 148, 153, 156, 162, 169, 171, 172, 176, 188, 189, 204, 207, 208, 216, 220, 225, 236, 243, 244, 245, 248, 250, 256, 261, 268, 275, 276, 280
Offset: 1
The terms together with their prime indices begin:
9: {2,2}
25: {3,3}
27: {2,2,2}
28: {1,1,4}
36: {1,1,2,2}
45: {2,2,3}
49: {4,4}
50: {1,3,3}
52: {1,1,6}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
76: {1,1,8}
81: {2,2,2,2}
88: {1,1,1,5}
92: {1,1,9}
96: {1,1,1,1,1,2}
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A112925 gives least squarefree number > prime(n), differences
A378038.
A112926 gives greatest squarefree number < prime(n), differences
A378037.
A377046 encodes k-differences of nonsquarefree numbers, zeros
A377050.
-
nn=100;
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}];
Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y]
A378082
Terms appearing only once in A377783 = least nonsquarefree number > prime(n).
Original entry on oeis.org
12, 16, 18, 20, 24, 40, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 108, 112, 116, 128, 132, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 294, 308, 312, 315, 320, 332, 338, 348
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
75: {2,3,3}
80: {1,1,1,1,3}
84: {1,1,2,4}
90: {1,2,2,3}
98: {1,4,4}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
116: {1,1,10}
128: {1,1,1,1,1,1,1}
132: {1,1,2,5}
Terms not appearing at all are
A378084.
A005117 lists the squarefree numbers.
A070321 gives the greatest squarefree number up to n.
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers < prime(n).
-
q:= 3: R:= NULL: flag:= false: count:= 0:
while count < 100 do
p:= q; q:= nextprime(q);
for k from p+1 to q-1 do
found:= false;
if not numtheory:-issqrfree(k) then
if flag then
count:= count+1; R:= R,k
fi;
found:= true; break
fi;
od;
flag:= found;
od:
R; # Robert Israel, Nov 20 2024
-
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}];
Select[Most[Union[y]],Count[y,#]==1&]
A378083
Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).
Original entry on oeis.org
4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
32: {1,1,1,1,1}
44: {1,1,5}
104: {1,1,1,6}
140: {1,1,3,4}
284: {1,1,20}
464: {1,1,1,1,10}
572: {1,1,5,6}
620: {1,1,3,11}
644: {1,1,4,9}
824: {1,1,1,27}
860: {1,1,3,14}
1232: {1,1,1,1,4,5}
Terms not appearing at all are
A378084.
A005117 lists the squarefree numbers.
A378086(n) =
A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf.
A053797,
A053806,
A070321,
A072284,
A112929,
A120992,
A224363,
A337030,
A377430,
A377431,
A377703.
-
y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
Select[Union[y],Count[y,#]==2&]
A380413
Terms appearing twice in A378086 (number of nonsquarefree numbers < prime(n)).
Original entry on oeis.org
0, 1, 11, 14, 39, 53, 109, 179, 222, 240, 251, 319, 337, 481, 505, 508, 578, 664, 674, 738, 818, 835, 877, 905, 933, 1041, 1069, 1098, 1325, 1352, 1392, 1535, 1539, 1567, 1652, 1663, 1732, 1817, 1849, 1960, 2134, 2148, 2158, 2220, 2387, 2428, 2457, 2622, 2625
Offset: 1
A070321 gives the greatest squarefree number up to n.
A112925 gives the greatest squarefree number between primes, least
A112926.
-
y=Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}];
Select[Most[Union[y]],Count[y,#]==2&]
Comments