A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
A338468
Odd squarefree numbers whose prime indices have no common divisor > 1.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 145: {3,10} 249: {2,23} 355: {3,20}
33: {2,5} 155: {3,11} 253: {5,9} 357: {2,4,7}
35: {3,4} 161: {4,9} 255: {2,3,7} 381: {2,31}
51: {2,7} 165: {2,3,5} 265: {3,16} 385: {3,4,5}
55: {3,5} 177: {2,17} 285: {2,3,8} 391: {7,9}
69: {2,9} 187: {5,7} 287: {4,13} 395: {3,22}
77: {4,5} 195: {2,3,6} 291: {2,25} 403: {6,11}
85: {3,7} 201: {2,19} 295: {3,17} 407: {5,12}
93: {2,11} 205: {3,13} 309: {2,27} 411: {2,33}
95: {3,8} 209: {5,8} 323: {7,8} 413: {4,17}
105: {2,3,4} 215: {3,14} 327: {2,29} 415: {3,23}
119: {4,7} 217: {4,11} 329: {4,15} 429: {2,5,6}
123: {2,13} 219: {2,21} 335: {3,19} 435: {2,3,10}
141: {2,15} 221: {6,7} 341: {5,11} 437: {8,9}
143: {5,6} 231: {2,4,5} 345: {2,3,9} 447: {2,35}
A337452 counts partitions with these Heinz numbers (ordered version:
A337451).
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by
A000837 (ordered version:
A000740).
Cf.
A000010,
A007359,
A051424,
A055684,
A056239,
A101268,
A289508,
A302505,
A302569,
A302696,
A302798,
A337694.
A338318
Composite numbers whose prime indices are pairwise intersecting (non-coprime).
Original entry on oeis.org
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 121: {5,5} 243: {2,2,2,2,2}
21: {2,4} 125: {3,3,3} 247: {6,8}
25: {3,3} 129: {2,14} 259: {4,12}
27: {2,2,2} 133: {4,8} 261: {2,2,10}
39: {2,6} 147: {2,4,4} 267: {2,24}
49: {4,4} 159: {2,16} 273: {2,4,6}
57: {2,8} 169: {6,6} 289: {7,7}
63: {2,2,4} 171: {2,2,8} 299: {6,9}
65: {3,6} 183: {2,18} 301: {4,14}
81: {2,2,2,2} 185: {3,12} 303: {2,26}
87: {2,10} 189: {2,2,2,4} 305: {3,18}
91: {4,6} 203: {4,10} 319: {5,10}
111: {2,12} 213: {2,20} 321: {2,28}
115: {3,9} 235: {3,15} 325: {3,3,6}
117: {2,2,6} 237: {2,22} 333: {2,2,12}
A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A318717 counts pairwise intersecting strict partitions.
A328673 counts partitions with pairwise intersecting distinct parts, with Heinz numbers
A328867 and restriction to triples
A337599 (except n = 3).
Cf.
A008578,
A051185,
A056239,
A101268,
A112798,
A284825,
A302569,
A305843,
A319752,
A327516,
A335236,
A337666,
A337667.
-
stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]
Comments