cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A339840 Numbers that cannot be factored into distinct primes or semiprimes.

Original entry on oeis.org

16, 32, 64, 81, 96, 128, 160, 192, 224, 243, 256, 288, 320, 352, 384, 416, 448, 486, 512, 544, 576, 608, 625, 640, 704, 729, 736, 768, 800, 832, 864, 896, 928, 960, 972, 992, 1024, 1088, 1152, 1184, 1215, 1216, 1280, 1312, 1344, 1376, 1408, 1458, 1472, 1504
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their prime indices begins:
    16: {1,1,1,1}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   128: {1,1,1,1,1,1,1}
   160: {1,1,1,1,1,3}
   192: {1,1,1,1,1,1,2}
   224: {1,1,1,1,1,4}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   352: {1,1,1,1,1,5}
   384: {1,1,1,1,1,1,1,2}
   416: {1,1,1,1,1,6}
   448: {1,1,1,1,1,1,4}
   486: {1,2,2,2,2,2}
For example, a complete list of all factorizations of 192 into primes or semiprimes is:
  (2*2*2*2*2*2*3)
  (2*2*2*2*2*6)
  (2*2*2*2*3*4)
  (2*2*2*4*6)
  (2*2*3*4*4)
  (2*4*4*6)
  (3*4*4*4)
Since none of these is strict, 192 is in the sequence.
		

Crossrefs

Allowing only primes gives A013929.
Removing all squares of primes gives A339740.
These are the positions of zeros in A339839.
The complement is A339889.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A338915 cannot be partitioned into distinct pairs (A320892).
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339742 into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n, ranked by A339618.
- A339655 counts non-loop-graphical partitions of 2n (A339657).

Programs

  • Maple
    filter:= proc(n)
      g(map(t -> t[2], ifactors(n)[2]))
    end proc;
    g:= proc(L) option remember; local x,i,j,t,s,Cons,R;
      if nops(L) = 1 then return L[1] > 3
      elif nops(L) = 2 then return max(L) > 4
      fi;
      Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1)
         + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))};
      R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary));
      type(R,string)
    end proc:
    select(filter, [$2..2000]); # Robert Israel, Dec 28 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&]

A339887 Number of factorizations of n into primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 1, 5, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
Conjecture: also the number of semistandard Young tableaux whose entries are the prime indices of n (A323437).
Is this a duplicate of A323437? - R. J. Mathar, Jan 05 2021

Examples

			The a(n) factorizations for n = 36, 60, 180, 360, 420, 840:
  6*6       6*10      5*6*6       6*6*10        2*6*35      6*10*14
  2*3*6     2*5*6     2*6*15      2*5*6*6       5*6*14      2*2*6*35
  2*2*3*3   2*2*15    3*6*10      2*2*6*15      6*7*10      2*5*6*14
            2*3*10    2*3*5*6     2*3*6*10      2*10*21     2*6*7*10
            2*2*3*5   2*2*3*15    2*2*3*5*6     2*14*15     2*2*10*21
                      2*3*3*10    2*2*2*3*15    2*5*6*7     2*2*14*15
                      2*2*3*3*5   2*2*3*3*10    3*10*14     2*2*5*6*7
                                  2*2*2*3*3*5   2*2*3*35    2*3*10*14
                                                2*2*5*21    2*2*2*3*35
                                                2*2*7*15    2*2*2*5*21
                                                2*3*5*14    2*2*2*7*15
                                                2*3*7*10    2*2*3*5*14
                                                2*2*3*5*7   2*2*3*7*10
                                                            2*2*2*3*5*7
		

Crossrefs

See link for additional cross-references.
Only allowing only primes gives A008966.
Not allowing primes gives A320656.
Unlabeled multiset partitions of this type are counted by A320663/A339888.
Allowing squares of primes gives A320732.
The strict version is A339742.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes.

Programs

  • Mathematica
    sqpe[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqpe[n/d],Min@@#>=d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqpe[n]],{n,100}]

Formula

a(A002110(n)) = A000085(n), and in general if n is a product of k distinct primes, a(n) = A000085(k).
a(n) = Sum_{d|n} A320656(n/d), so A320656 is the Moebius transform of this sequence.

A339889 Products of distinct primes or semiprimes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2020

Keywords

Comments

Numbers that can be factored into distinct primes or semiprimes.
A semiprime (A001358) is a product of any two prime numbers.

Examples

			See A339840 for examples.
		

Crossrefs

See link for additional cross-references.
Allowing only primes gives A005117.
Not allowing squares of primes gives A339741.
Positions of nonzeros in A339839.
Complement of A339840.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A320732 counts factorizations into primes or semiprimes.
A339742 counts factorizations into distinct primes or squarefree semiprimes.
A339841 have exactly one factorization into primes or semiprimes.

Programs

  • Maple
    N:= 100: # for terms <= N
    B:= select(t -> numtheory:-bigomega(t) <= 2, {$2..N}):
    S:= {1}:
    for b in B do
      S:= S union map(`*`,select(`<=`,S,N/b),b)
    od:
    sort(convert(S,list)); # Robert Israel, Dec 28 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]!={}&]
Previous Showing 11-13 of 13 results.