A340605
Heinz numbers of integer partitions of even positive rank.
Original entry on oeis.org
5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1
The sequence of partitions with their Heinz numbers begins:
5: (3) 57: (8,2) 97: (25)
11: (5) 58: (10,1) 99: (5,2,2)
14: (4,1) 59: (17) 102: (7,2,1)
17: (7) 65: (6,3) 103: (27)
21: (4,2) 66: (5,2,1) 104: (6,1,1,1)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 68: (7,1,1) 109: (29)
31: (11) 73: (21) 110: (5,3,1)
35: (4,3) 74: (12,1) 111: (12,2)
38: (8,1) 83: (23) 122: (18,1)
39: (6,2) 86: (14,1) 124: (11,1,1)
41: (13) 87: (10,2) 127: (31)
44: (5,1,1) 91: (6,4) 129: (14,2)
47: (15) 92: (9,1,1) 133: (8,4)
49: (4,4) 95: (8,3) 137: (33)
Note: Heinz numbers are given in parentheses below.
These partitions are counted by
A101708.
A072233 counts partitions by sum and length.
- Rank -
A257541 gives the rank of the partition with Heinz number n.
- Even -
A339846 counts factorizations of even length.
Cf.
A006141,
A024430,
A056239,
A112798,
A340387,
A340598,
A340600,
A340608,
A340609,
A340610,
A340653.
A340652
Number of non-isomorphic twice-balanced multiset partitions of weight n.
Original entry on oeis.org
1, 1, 0, 2, 3, 6, 20, 65, 134, 482, 1562, 4974, 15466, 51768, 179055, 631737, 2216757, 7905325, 28768472, 106852116, 402255207, 1532029660, 5902839974, 23041880550, 91129833143, 364957188701, 1478719359501, 6058859894440, 25100003070184, 105123020009481, 445036528737301
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 6 multiset partitions (empty column indicated by dot):
{{1}} . {{1},{2,2}} {{1,1},{2,2}} {{1},{1},{2,3,3}}
{{2},{1,2}} {{1,2},{1,2}} {{1},{2},{2,3,3}}
{{1,2},{2,2}} {{1},{2},{3,3,3}}
{{1},{3},{2,3,3}}
{{2},{3},{1,2,3}}
{{3},{3},{1,2,3}}
The co-balanced version is
A319616.
The singly balanced version is
A340600.
The cross-balanced version is
A340651.
The version for factorizations is
A340655.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A303975 counts distinct prime factors in prime indices.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
-
A047993 counts balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340653 counts balanced factorizations.
-
A340657/
A340656 list numbers with/without a twice-balanced factorization.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
G(m,n,k,y=1)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, y^t*subst(x*Polrev(K(q, t, min(k,n\t))), x, x^t)/t, O(x*x^n)))); s/m!}
seq(n)={Vec(1 + sum(k=1,n, polcoef(G(k,n,k,y) - G(k-1,n,k,y) - G(k,n,k-1,y) + G(k-1,n,k-1,y), k, y)))} \\ Andrew Howroyd, Jan 15 2024
A340651
Number of non-isomorphic cross-balanced multiset partitions of weight n.
Original entry on oeis.org
1, 1, 2, 4, 11, 26, 77, 220, 677, 2098, 6756, 22101, 74264, 253684, 883795, 3130432, 11275246, 41240180, 153117873, 576634463, 2201600769, 8517634249, 33378499157, 132438117118, 531873247805, 2161293783123, 8883906870289, 36928576428885, 155196725172548, 659272353608609, 2830200765183775
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 16 multiset partitions:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{1},{2,2}} {{1,1},{2,2}}
{{2},{1,2}} {{1,2},{1,2}}
{{1},{1},{1}} {{1,2},{2,2}}
{{1},{2,3,3}}
{{3},{1,2,3}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{2,2}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
The co-balanced version is
A319616.
The twice-balanced version is
A340652.
The version for factorizations is
A340654.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
-
A047993 counts balanced partitions.
-
A340596 counts co-balanced factorizations.
-
A340599 counts alt-balanced factorizations.
-
A340600 counts unlabeled balanced multiset partitions.
-
A340653 counts balanced factorizations.
-
\\ See A340652 for G.
seq(n)={Vec(1 + sum(k=1,n, G(k,n,k) - G(k-1,n,k) - G(k,n,k-1) + G(k-1,n,k-1)))} \\ Andrew Howroyd, Jan 15 2024
Comments