cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A349150 Heinz numbers of integer partitions with at most one odd part.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with at most one odd prime index.
Also Heinz numbers of partitions with conjugate alternating sum <= 1.

Examples

			The terms and their prime indices begin:
      1: {}          23: {9}         49: {4,4}
      2: {1}         26: {1,6}       51: {2,7}
      3: {2}         27: {2,2,2}     53: {16}
      5: {3}         29: {10}        54: {1,2,2,2}
      6: {1,2}       31: {11}        57: {2,8}
      7: {4}         33: {2,5}       58: {1,10}
      9: {2,2}       35: {3,4}       59: {17}
     11: {5}         37: {12}        61: {18}
     13: {6}         38: {1,8}       63: {2,2,4}
     14: {1,4}       39: {2,6}       65: {3,6}
     15: {2,3}       41: {13}        67: {19}
     17: {7}         42: {1,2,4}     69: {2,9}
     18: {1,2,2}     43: {14}        71: {20}
     19: {8}         45: {2,2,3}     73: {21}
     21: {2,4}       47: {15}        74: {1,12}
		

Crossrefs

The case of no odd parts is A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These partitions are counted by A100824, even-length case A349149.
These are the positions of 0's and 1's in A257991.
The conjugate partitions are ranked by A349151.
The case of one odd part is A349158, counted by A000070 up to 0's.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340932 ranks partitions whose least part is odd, counted by A026804.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]

Formula

Union of A066207 (no odd parts) and A349158 (one odd part).

A341447 Heinz numbers of integer partitions whose only even part is the smallest.

Original entry on oeis.org

3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      3: (2)         77: (5,4)     165: (5,3,2)
      7: (4)         79: (22)      173: (40)
     13: (6)         89: (24)      177: (17,2)
     15: (3,2)       93: (11,2)    181: (42)
     19: (8)        101: (26)      193: (44)
     29: (10)       107: (28)      199: (46)
     33: (5,2)      113: (30)      201: (19,2)
     37: (12)       119: (7,4)     217: (11,4)
     43: (14)       123: (13,2)    219: (21,2)
     51: (7,2)      131: (32)      221: (7,6)
     53: (16)       139: (34)      223: (48)
     61: (18)       141: (15,2)    229: (50)
     69: (9,2)      151: (36)      239: (52)
     71: (20)       161: (9,4)     249: (23,2)
     75: (3,3,2)    163: (38)      251: (54)
		

Crossrefs

These partitions are counted by A087897, shifted left once.
Terms of A340933 can be factored into elements of this sequence.
The odd version is A341446.
A000009 counts partitions into odd parts, ranked by A066208.
A001222 counts prime factors.
A005843 lists even numbers.
A026804 counts partitions whose least part is odd, ranked by A340932.
A026805 counts partitions whose least part is even, ranked by A340933.
A027187 counts partitions with even length/max, ranked by A028260/A244990.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058696 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]

A341448 Heinz numbers of integer partitions of type OO.

Original entry on oeis.org

6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      6: (2,1)         74: (12,1)           141: (15,2)
     14: (4,1)         77: (5,4)            142: (20,1)
     15: (3,2)         86: (14,1)           143: (6,5)
     24: (2,1,1,1)     93: (11,2)           145: (10,3)
     26: (6,1)         95: (8,3)            150: (3,3,2,1)
     33: (5,2)         96: (2,1,1,1,1,1)    152: (8,1,1,1)
     35: (4,3)        104: (6,1,1,1)        158: (22,1)
     38: (8,1)        106: (16,1)           161: (9,4)
     51: (7,2)        119: (7,4)            177: (17,2)
     54: (2,2,2,1)    122: (18,1)           178: (24,1)
     56: (4,1,1,1)    123: (13,2)           185: (12,3)
     58: (10,1)       126: (4,2,2,1)        201: (19,2)
     60: (3,2,1,1)    132: (5,2,1,1)        202: (26,1)
     65: (6,3)        135: (3,2,2,2)        204: (7,2,1,1)
     69: (9,2)        140: (4,3,1,1)        209: (8,5)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by A078408 (A300272).
The type EE version is A236913 (A340784).
These partitions (for odd n) are counted by A236914.
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd (A340932).
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A160786 counts odd-length partitions of odd numbers (A340931).
A340101 counts factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]

A341449 Heinz numbers of integer partitions into odd parts > 1.

Original entry on oeis.org

1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()        97: (25)       197: (45)       307: (63)
      5: (3)      103: (27)       205: (13,3)     313: (65)
     11: (5)      109: (29)       211: (47)       331: (67)
     17: (7)      115: (9,3)      227: (49)       335: (19,3)
     23: (9)      121: (5,5)      233: (51)       341: (11,5)
     25: (3,3)    125: (3,3,3)    235: (15,3)     347: (69)
     31: (11)     127: (31)       241: (53)       353: (71)
     41: (13)     137: (33)       253: (9,5)      365: (21,3)
     47: (15)     149: (35)       257: (55)       367: (73)
     55: (5,3)    155: (11,3)     269: (57)       379: (75)
     59: (17)     157: (37)       275: (5,3,3)    389: (77)
     67: (19)     167: (39)       277: (59)       391: (9,7)
     73: (21)     179: (41)       283: (61)       401: (79)
     83: (23)     187: (7,5)      289: (7,7)      415: (23,3)
     85: (7,3)    191: (43)       295: (17,3)     419: (81)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
Partitions with no ones are A002865 (A005408).
The case of even parts is A035363 (A066207).
These partitions are counted by A087897.
The version for factorizations is A340101.
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A056239 adds up prime indices.
A078408 counts partitions with odd parts, length, and sum (A300272).
A112798 lists the prime indices of each positive integer.
A257991/A257992 count odd/even prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
Previous Showing 11-14 of 14 results.