A349150
Heinz numbers of integer partitions with at most one odd part.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1
The terms and their prime indices begin:
1: {} 23: {9} 49: {4,4}
2: {1} 26: {1,6} 51: {2,7}
3: {2} 27: {2,2,2} 53: {16}
5: {3} 29: {10} 54: {1,2,2,2}
6: {1,2} 31: {11} 57: {2,8}
7: {4} 33: {2,5} 58: {1,10}
9: {2,2} 35: {3,4} 59: {17}
11: {5} 37: {12} 61: {18}
13: {6} 38: {1,8} 63: {2,2,4}
14: {1,4} 39: {2,6} 65: {3,6}
15: {2,3} 41: {13} 67: {19}
17: {7} 42: {1,2,4} 69: {2,9}
18: {1,2,2} 43: {14} 71: {20}
19: {8} 45: {2,2,3} 73: {21}
21: {2,4} 47: {15} 74: {1,12}
These are the positions of 0's and 1's in
A257991.
The conjugate partitions are ranked by
A349151.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by
A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000290,
A000700,
A001222,
A027187,
A027193,
A028260,
A035363,
A047993,
A215366,
A257992,
A277579,
A326841.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]
A341447
Heinz numbers of integer partitions whose only even part is the smallest.
Original entry on oeis.org
3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
3: (2) 77: (5,4) 165: (5,3,2)
7: (4) 79: (22) 173: (40)
13: (6) 89: (24) 177: (17,2)
15: (3,2) 93: (11,2) 181: (42)
19: (8) 101: (26) 193: (44)
29: (10) 107: (28) 199: (46)
33: (5,2) 113: (30) 201: (19,2)
37: (12) 119: (7,4) 217: (11,4)
43: (14) 123: (13,2) 219: (21,2)
51: (7,2) 131: (32) 221: (7,6)
53: (16) 139: (34) 223: (48)
61: (18) 141: (15,2) 229: (50)
69: (9,2) 151: (36) 239: (52)
71: (20) 161: (9,4) 249: (23,2)
75: (3,3,2) 163: (38) 251: (54)
These partitions are counted by
A087897, shifted left once.
Terms of
A340933 can be factored into elements of this sequence.
A026805 counts partitions whose least part is even, ranked by
A340933.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
A341448
Heinz numbers of integer partitions of type OO.
Original entry on oeis.org
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
6: (2,1) 74: (12,1) 141: (15,2)
14: (4,1) 77: (5,4) 142: (20,1)
15: (3,2) 86: (14,1) 143: (6,5)
24: (2,1,1,1) 93: (11,2) 145: (10,3)
26: (6,1) 95: (8,3) 150: (3,3,2,1)
33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1)
35: (4,3) 104: (6,1,1,1) 158: (22,1)
38: (8,1) 106: (16,1) 161: (9,4)
51: (7,2) 119: (7,4) 177: (17,2)
54: (2,2,2,1) 122: (18,1) 178: (24,1)
56: (4,1,1,1) 123: (13,2) 185: (12,3)
58: (10,1) 126: (4,2,2,1) 201: (19,2)
60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1)
65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1)
69: (9,2) 140: (4,3,1,1) 209: (8,5)
Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by
A078408 (
A300272).
These partitions (for odd n) are counted by
A236914.
A340101 counts factorizations into odd factors.
Cf.
A000700,
A024429,
A027187,
A106529,
A117409,
A174725,
A257541,
A325134,
A339890,
A340102,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
A341449
Heinz numbers of integer partitions into odd parts > 1.
Original entry on oeis.org
1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
1: () 97: (25) 197: (45) 307: (63)
5: (3) 103: (27) 205: (13,3) 313: (65)
11: (5) 109: (29) 211: (47) 331: (67)
17: (7) 115: (9,3) 227: (49) 335: (19,3)
23: (9) 121: (5,5) 233: (51) 341: (11,5)
25: (3,3) 125: (3,3,3) 235: (15,3) 347: (69)
31: (11) 127: (31) 241: (53) 353: (71)
41: (13) 137: (33) 253: (9,5) 365: (21,3)
47: (15) 149: (35) 257: (55) 367: (73)
55: (5,3) 155: (11,3) 269: (57) 379: (75)
59: (17) 157: (37) 275: (5,3,3) 389: (77)
67: (19) 167: (39) 277: (59) 391: (9,7)
73: (21) 179: (41) 283: (61) 401: (79)
83: (23) 187: (7,5) 289: (7,7) 415: (23,3)
85: (7,3) 191: (43) 295: (17,3) 419: (81)
Note: A-numbers of ranking sequences are in parentheses below.
These partitions are counted by
A087897.
The version for factorizations is
A340101.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
Comments