cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A336849 a(n) = A003961(n) / gcd(A003961(n), sigma(A003961(n))), where A003961 is the prime shift towards larger primes.

Original entry on oeis.org

1, 3, 5, 9, 7, 5, 11, 27, 25, 21, 13, 15, 17, 11, 35, 81, 19, 75, 23, 63, 55, 39, 29, 9, 49, 17, 125, 33, 31, 35, 37, 243, 65, 57, 77, 225, 41, 23, 85, 189, 43, 55, 47, 9, 175, 29, 53, 135, 121, 49, 19, 17, 59, 125, 13, 99, 115, 93, 61, 105, 67, 111, 275, 729, 119, 65, 71, 171, 29, 77, 73, 135, 79, 41, 245, 69, 143
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

If there are no more 1's in this sequence after the initial one, then there are no odd terms of A007691 (multiply perfect numbers) larger than one.
Denominator of the ratio A003973(n) / A003961(n), also denominator of the ratio (A341528(n)/A341529(n)) / (n / sigma(n)). - Antti Karttunen, Feb 16 2021

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := (gn = g[n])/GCD[gn, DivisorSigma[1, gn]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336849(n) = { my(u=A003961(n)); (u/gcd(u, sigma(u))); };
    \\ Or alternatively as:
    A336849(n) = { my(u=A003961(n)); denominator(sigma(u)/u); };

Formula

a(n) = A003961(n) / A336850(n) = A003961(n) / gcd(A003961(n), A003973(n)).
a(n) = A017666(A003961(n)).

A349745 Numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)), where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 120, 216, 672, 2464, 22176, 228480, 523776, 640640, 837760, 5581440, 5765760, 7539840, 12999168, 19603584, 33860736, 38342304, 71344000, 95472000, 102136320, 197308800, 220093440, 345080736, 459818240, 807009280, 975576960, 1476304896, 1510831360, 1773584640
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2021

Keywords

Comments

Numbers k for which k * A342671(k) = A000203(k) * A322361(k).
Numbers k such that gcd(A064987(k), A191002(k)) = gcd(A064987(k), A341529(k)).
Obviously, all odd terms in this sequence must be squares.
All the terms k of A005820 that satisfy A007949(k) < A007814(k) [i.e., whose 3-adic valuation is strictly less than their 2-adic valuation] are also terms of this sequence. Incidentally, the first six known terms of A005820 satisfy this condition, while on the other hand, any hypothetical odd 3-perfect number would be excluded from this sequence. Also, as a corollary, any hypothetical 3-perfect numbers of the form 4u+2 must not be multiples of 3 if they are to appear here. Similarly for any k which occurs in A349169, for 2*k to occur in this sequence, it shouldn't be a multiple of 3 and k should also be a term of A191218. See question 2 and its partial answer in A349169.
From Antti Karttunen, Feb 13-20 2022: (Start)
Question: Are all terms/2 (A351548) abundant, from n > 1 onward?
Note that of the 65 known 5-multiperfect numbers, all others except these three 1245087725796543283200, 1940351499647188992000, 4010059765937523916800 are also included in this sequence. The three exceptions are distinguished by the fact that their 3 and 5-adic valuations are equal. In 62 others the former is larger.
If k satisfying the condition were of the form 4u+2, then it should be one of the terms of A191218 doubled as only then both k and sigma(k) are of the form 4u+2, with equal 2-adic valuations for both. More precisely, one of the terms of A351538.
(End)

Crossrefs

Cf. also A349169, A349746, A351458, A351549 for other variants.
Subsequence of A351554 and also of its subsequence A351551.
Cf. A351459 (subsequence, intersection with A351458), A351548 (terms halved).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[1] = True; q[n_] := n * GCD[(s = Times @@ f1 @@@ (f = FactorInteger[n])), (r = Times @@ f2 @@@ f)] == s*GCD[n, r]; Select[Range[10^6], q] (* Amiram Eldar, Nov 29 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349745(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == (s*gcd(n,u))); };

Formula

For all n >= 1, A007814(A000203(a(n))) = A007814(a(n)). [sigma preserves the 2-adic valuation of the terms of this sequence]

A341530 a(n) = gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 36, 4, 5, 1, 2, 2, 36, 2, 24, 120, 1, 2, 9, 4, 2, 8, 4, 6, 180, 1, 18, 4, 168, 2, 360, 2, 7, 12, 2, 336, 117, 2, 12, 4, 10, 2, 288, 4, 364, 30, 24, 6, 36, 19, 3, 360, 18, 6, 72, 56, 120, 16, 2, 2, 360, 2, 16, 4, 1, 12, 144, 4, 2, 60, 336, 2, 45, 2, 6, 10, 12, 264, 72, 4, 2, 11, 2, 6, 2016, 4, 12, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Cf. A000203, A003961, A003973, A028982 (positions of odd terms), A341512, A341526, A341527, A341528, A341529, A342670.
Cf. A342674 (same sequence applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };

Formula

a(n) = gcd(A341528(n), A341529(n)) = gcd(n*A003973(n), A000203(n)*A003961(n)).
a(n) = gcd(A341512(n), A341528(n)) = gcd(A341512(n), A341529(n)) = A342670(A003961(n)). - Antti Karttunen, Mar 24 2021

A341527 Denominator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 9, 10, 63, 21, 5, 22, 81, 325, 189, 78, 35, 119, 33, 7, 2511, 171, 325, 115, 1323, 220, 351, 116, 45, 1519, 119, 1250, 33, 465, 21, 592, 2187, 260, 1539, 11, 175, 779, 345, 1190, 1701, 903, 55, 517, 27, 455, 261, 424, 1395, 363, 4557, 19, 833, 531, 625, 117, 297, 575, 4185, 1830, 147, 2077, 666, 7150, 92583, 833, 195
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Denominator of ratio A341528(n)/A341529(n). A341526 gives the numerator, see comments there.

Crossrefs

Cf. A341526 (numerators).
Cf. A341627 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Denominator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341527(n) = { my(s=A003961(n)); denominator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341529(n) / A341530(n) = A341529(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) > A341526(n).

A337381 Numbers k for which A003973(k) >= 2*sigma(k).

Original entry on oeis.org

6, 8, 9, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Note that A003973(n) >= sigma(n) for all n. See A336852.
Like the abundancy index (ratio A000203(n)/n), and ratio A003961(n)/n, the ratio A003973(n)/sigma(n) is also multiplicative and > 1 for all n > 1. Thus if the number has a proper divisor that is in this sequence, then the number itself is also. See A337543 for those terms included here, but which have no proper divisor in this sequence. - Antti Karttunen, Aug 31 2020
All terms are in A246282 because A341528(n) < A341529(n) for all n > 1. - Antti Karttunen, Feb 22 2021

Crossrefs

Cf. A337382 (complement), A337383 (characteristic function).
Subsequences: A337378, A337384, A337386, A337543 (primitive terms).
Subsequence of A246282.

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    isA337381(n) = (A003973(n)>=2*sigma(n));

A341526 Numerator of ratio n*sigma(A003961(n)) / sigma(n)*A003961(n), where sigma is the sum of divisors of n, and A003961 shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 8, 9, 52, 20, 4, 21, 64, 279, 160, 77, 26, 117, 28, 6, 1936, 170, 248, 114, 1040, 189, 308, 115, 32, 1425, 104, 1053, 26, 464, 16, 589, 1664, 231, 1360, 10, 124, 777, 304, 1053, 1280, 902, 42, 516, 22, 372, 230, 423, 968, 343, 3800, 17, 676, 530, 468, 110, 224, 513, 3712, 1829, 104, 2074, 589, 5859, 69952, 780, 154
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Like the ratios sigma(n)/n, A003973(n)/A003961(n) and A003961(n)/n, also the ratio r(n) = A341528(n)/A341529(n) is multiplicative: if gcd(x,y) = 1, r(x*y) = r(x)*r(y).

Crossrefs

Cf. A341527 (denominators).
Cf. A341626 (same sequence as applied onto prime shift array A246278).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; g[1] = 1; g[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := Numerator[n*DivisorSigma[1, (gn = g[n])]/(DivisorSigma[1, n] * gn)]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341526(n) = { my(s=A003961(n)); numerator((sigma(s)*n)/(sigma(n)*s)); };

Formula

a(n) = A341528(n) / A341530(n) = A341528(n) / gcd(A341528(n), A341529(n)).
For all n > 1, a(n) < A341527(n).

A341627 Square array A(n,k) = A341527(A246278(n,k)), read by falling antidiagonals; denominators of the columnwise first quotients of A341605/A341606.

Original entry on oeis.org

9, 63, 10, 5, 325, 21, 81, 7, 1519, 22, 189, 1250, 11, 363, 78, 35, 220, 13377, 52, 22477, 119, 33, 455, 117, 66550, 34, 52887, 171, 2511, 260, 4774, 374, 804102, 133, 110827, 115, 325, 6875, 833, 2574, 6669, 584647, 69, 201549, 116, 1323, 3038, 1875181, 627, 205751, 13685, 1790199, 58, 465073, 465
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n =  1       2    3        4      5        6      7             8        9
  2n =  2       4    6        8     10       12     14            16       18
----+--------------------------------------------------------------------------
  1 |   9,     63,   5,      81,   189,      35,    33,         2511,     325,
  2 |  10,    325,   7,    1250,   220,     455,   260,         6875,    3038,
  3 |  21,   1519,  11,   13377,   117,    4774,   833,      1875181,    1089,
  4 |  22,    363,  52,   66550,   374,    2574,   627,     41009441,    6422,
  5 |  78,  22477,  34,  804102,  6669,  205751,  1495,    459974905,  317322,
  6 | 119,  52887, 133,  584647, 13685,  531981, 13804,   2584223261,  775789,
  7 | 171, 110827,  69, 1790199,  9918,  670795, 15903,  11564815861, 1813941,
  8 | 115, 201549,  58, 2202227, 17825, 1016508, 34040,  38495207801, 2325365,
  9 | 116, 465073,  93, 5170468, 68672, 7457205, 90364, 206922836641, 3348124,
etc.
		

Crossrefs

Cf. A341626 (numerators), A341628 (the greatest prime factor of these terms).

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341627sq(row,col) = A341527(A246278sq(row,col));
    A341627list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341627sq(col,(a-(col-1))))); (v); };
    v341627 = A341627list(up_to);
    A341627(n) = v341627[n];

Formula

A(n,k) = A341527(A246278(n,k)), where A341527(n) is the denominator of the ratio (n * sigma(A003961(n))) / (sigma(n) * A003961(n)), i.e., of A341528(n)/A341529(n).
For all n, k, A(n,k) > A341626(n, k).

A341525 Numerator of A003973(n) / A003961(n).

Original entry on oeis.org

1, 4, 6, 13, 8, 8, 12, 40, 31, 32, 14, 26, 18, 16, 48, 121, 20, 124, 24, 104, 72, 56, 30, 16, 57, 24, 156, 52, 32, 64, 38, 364, 84, 80, 96, 403, 42, 32, 108, 320, 44, 96, 48, 14, 248, 40, 54, 242, 133, 76, 24, 26, 60, 208, 16, 160, 144, 128, 62, 208, 68, 152, 372, 1093, 144, 112, 72, 260, 36, 128, 74, 248, 80, 56
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Comments

Also numerator of the ratio (A341528(n)/A341529(n)) / (n/sigma(n)).

Crossrefs

Cf. A336849 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/((p - 1)*p^e); g[p_, e_] := f[NextPrime[p], e]; a[1] = 1; a[n_] := Numerator[Times @@ g @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341525(n) = { my(u=A003961(n), s=sigma(u)); (s/gcd(u, s)); };

Formula

a(n) = A017665(A003961(n)).
a(n) = A003973(n) / A336850(n) = A003973(n) / gcd(A003961(n), A003973(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A341525(k)/A336849(k) = 1 / Product_{p prime} (1 - 1/(p*nextprime(p))) = 1.3766054560..., where nextprime(p) = A151800(p). - Amiram Eldar, Dec 28 2024

A342661 a(n) = n * sigma(A064989(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma gives the sum of the divisors of its argument.

Original entry on oeis.org

1, 2, 9, 4, 20, 18, 42, 8, 63, 40, 88, 36, 156, 84, 180, 16, 238, 126, 342, 80, 378, 176, 460, 72, 325, 312, 405, 168, 696, 360, 930, 32, 792, 476, 840, 252, 1184, 684, 1404, 160, 1558, 756, 1806, 352, 1260, 920, 2068, 144, 1519, 650, 2142, 624, 2544, 810, 1760, 336, 3078, 1392, 3186, 720, 3660, 1860, 2646, 64, 3120
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^e, Module[{q = NextPrime[p, -1]}, p^e*(q^(e + 1) - 1)/(q - 1)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A326041(n) = sigma(A064989(n));
    A342661(n) = (n*A326041(n));

Formula

Multiplicative with a(p^e) = (p^e) * (q^(e+1)-1)/(q-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = n * A326041(n) = n * A000203(A064989(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/9) * Product_{p prime > 2} (p^3/((p+1)*(p^2-prevprime(p)))) = 0.1815217..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022

A342662 a(n) = sigma(n) * A064989(n), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p, and sigma is the sum of the divisors of n.

Original entry on oeis.org

1, 3, 8, 7, 18, 24, 40, 15, 52, 54, 84, 56, 154, 120, 144, 31, 234, 156, 340, 126, 320, 252, 456, 120, 279, 462, 320, 280, 690, 432, 928, 63, 672, 702, 720, 364, 1178, 1020, 1232, 270, 1554, 960, 1804, 588, 936, 1368, 2064, 248, 1425, 837, 1872, 1078, 2538, 960, 1512, 600, 2720, 2070, 3180, 1008, 3658, 2784, 2080, 127
Offset: 1

Views

Author

Antti Karttunen, Mar 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, NextPrime[p, -1]^e]*(p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
  • PARI
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A342662(n) = (sigma(n)*A064989(n));

Formula

Multiplicative with a(p^e) = q^e * (p^(e+1)-1)/(p-1), where q = 1 for p = 2, and for odd primes p, q = A151799(p), i.e., the previous prime.
a(n) = A000203(n) * A064989(n).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (16/63) * Product_{p prime > 2} p^4*(p-1)/((p^3-prevprime(p))*(p^2-prevprime(p))) = 0.1935405..., where prevprime is A151799. - Amiram Eldar, Dec 24 2022
Previous Showing 11-20 of 26 results. Next