cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A342044 When a digit d is odd, the next digit is > d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 40, 14, 15, 60, 16, 17, 80, 18, 20, 21, 22, 23, 41, 24, 25, 61, 26, 27, 81, 28, 34, 35, 62, 36, 37, 82, 38, 42, 43, 44, 45, 63, 46, 47, 83, 48, 56, 57, 84, 58, 64, 65, 66, 67, 85, 68, 78, 86, 87, 88, 120, 121, 200, 122, 123, 400, 124, 125, 600, 126, 127, 800, 128
Offset: 1

Views

Author

Eric Angelini, Feb 26 2021

Keywords

Comments

The sequence is always extended with the smallest positive integer not yet present that doesn't lead to a contradiction.
No digit 9 is present in the sequence (as 9, being odd, would block it).

Crossrefs

Cf. A342042, A342043, A342045, A342046 and A342047 (variations on the same idea).

Programs

  • PARI
    See Links section.

A342045 When a digit d is odd, the next digit is < d.

Original entry on oeis.org

0, 2, 3, 10, 4, 5, 20, 6, 7, 22, 8, 9, 23, 24, 25, 26, 27, 28, 29, 30, 32, 40, 42, 43, 100, 44, 45, 46, 47, 48, 49, 50, 52, 53, 102, 54, 60, 62, 63, 103, 104, 64, 65, 105, 106, 66, 67, 68, 69, 70, 72, 73, 107, 108, 74, 75, 109, 76, 80, 82, 83, 200, 84, 85, 202, 86, 87, 203, 204, 88, 89, 205, 206, 90, 92, 93
Offset: 1

Views

Author

Eric Angelini, Feb 26 2021

Keywords

Comments

After a(1) = 0, the sequence is always extended with the smallest positive integer not yet present that doesn't lead to a contradiction.
No term ends in 1 (as this 1 would block the sequence).

Crossrefs

Cf. A342042, A342043, A342044, A342046 and A342047 (variations on the same idea).

Programs

  • PARI
    See Links section.

A347298 Numbers that contain an even digit d immediately followed by a digit <= d.

Original entry on oeis.org

20, 21, 22, 40, 41, 42, 43, 44, 60, 61, 62, 63, 64, 65, 66, 80, 81, 82, 83, 84, 85, 86, 87, 88, 100, 120, 121, 122, 140, 141, 142, 143, 144, 160, 161, 162, 163, 164, 165, 166, 180, 181, 182, 183, 184, 185, 186, 187, 188, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2021

Keywords

Comments

Conjecture: This is precisely the list of numbers missing from A342042.
The conjecture is correct, see A342042 for details. - Sebastian Karlsson, Oct 02 2021

Crossrefs

Cf. A342042, A377912 (complement).

Programs

  • Mathematica
    A347298Q[k_] := MemberQ[Partition[IntegerDigits[k], 2, 1], {i_?EvenQ, j_} /; j <= i];
    Select[Range[300], A347298Q] (* Paolo Xausa, Mar 17 2025 *)
  • Python
    def ok(n):
        s = str(n)
        return any(s[i] in "2468" and s[i+1] <= s[i] for i in range(len(s)-1))
    print([k for k in range(216) if ok(k)]) # Michael S. Branicky, Nov 28 2024

A382462 Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is < d.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 31, 21, 23, 33, 34, 35, 36, 37, 38, 39, 51, 24, 53, 41, 25, 55, 56, 57, 58, 59, 71, 26, 73, 43, 45, 61, 27, 75, 63, 46, 77, 78, 79, 91, 28, 93, 47, 81, 29, 95, 65, 67, 83, 48, 97, 85, 68, 99, 111, 49, 112, 69
Offset: 1

Views

Author

Paolo Xausa, Mar 27 2025

Keywords

Comments

Could be summarized as "even digit, previous smaller". A variant of A342042.
No term contains the digit 0. - Paolo Xausa, Apr 30 2025

Crossrefs

Programs

  • Mathematica
    A382462list[nmax_] := Module[{a, s, invQ, fu = 2},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i >= j]];
      s[_] := False; s[1] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 1, nmax-1]];
    A382462list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "02468")
    def agen(): # generator of terms
        an, seen, s, m = 1, {1}, "1", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025

A382621 Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is > d.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 6, 9, 8, 10, 11, 13, 15, 17, 19, 20, 30, 31, 32, 33, 21, 35, 23, 25, 27, 29, 37, 39, 40, 50, 51, 52, 53, 54, 55, 41, 57, 42, 59, 43, 70, 71, 72, 73, 74, 75, 45, 47, 49, 60, 76, 77, 61, 79, 62, 90, 91, 92, 93, 94, 95, 96, 97, 63, 98, 64, 99, 65, 101, 103
Offset: 1

Views

Author

Paolo Xausa, Apr 01 2025

Keywords

Comments

Could be summarized as "even digit, previous bigger". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A382621list[nmax_] := Module[{a, s, invQ, fu = 2},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?EvenQ} /; i <= j]];
      s[_] := False; s[1] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 1, nmax - 1]];
    A382621list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "02468")
    def agen(): # generator of terms
        an, seen, s, m = 1, {1}, "1", 2
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 03 2025

A382935 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is > d.

Original entry on oeis.org

0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 20, 21, 22, 12, 14, 16, 18, 24, 26, 28, 30, 40, 41, 42, 43, 44, 31, 46, 32, 48, 34, 36, 38, 50, 60, 61, 62, 63, 64, 65, 66, 51, 68, 52, 80, 81, 82, 83, 84, 85, 86, 53, 87, 54, 88, 56, 58, 70, 200, 202, 100, 204, 102, 104, 106, 108, 71, 206, 120, 208
Offset: 1

Views

Author

Paolo Xausa, Apr 14 2025

Keywords

Comments

Could be summarized as "odd digit, previous bigger". A variant of A342042.
No term contains the digit 9.

Crossrefs

Programs

  • Mathematica
    A382935list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i <= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Max[Mod[#, 10], 1]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A382935list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i+1] < s[i] for i in range(len(s)-1) if s[i+1] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 14 2025

A383059 Lexicographically earliest sequence of distinct nonnegative integers such that if a digit d in the digit stream (ignoring commas) is odd, the previous digit is < d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 10, 12, 22, 23, 24, 25, 26, 27, 28, 29, 40, 13, 42, 30, 14, 44, 45, 46, 47, 48, 49, 60, 15, 62, 32, 34, 50, 16, 64, 52, 35, 66, 67, 68, 69, 80, 17, 82, 36, 70, 18, 84, 54, 56, 72, 37, 86, 74, 57, 88, 89, 200, 19, 201, 38, 90, 39, 202, 58
Offset: 1

Views

Author

Paolo Xausa, Apr 18 2025

Keywords

Comments

Could be summarized as "odd digit, previous smaller". A variant of A342042.

Crossrefs

Programs

  • Mathematica
    A383059list[nmax_] := Module[{a, s, invQ, fu = 1},
      invQ[k_] := invQ[k] = (If[#, s[k] = #]; #) & [MemberQ[Partition[IntegerDigits[k], 2, 1], {i_, j_?OddQ} /; i >= j]];
      s[_] := False; s[0] = True;
      NestList[(a = fu; While[s[a] || invQ[a] || invQ[# + First[IntegerDigits[a]]], a++] & [Mod[#, 10]*10]; While[s[fu], fu++]; s[a] = True; a) &, 0, nmax - 1]];
    A383059list[100]
  • Python
    from itertools import count, islice
    def cond(s):
        return all(s[i] > s[i-1] for i in range(1, len(s)) if s[i] in "13579")
    def agen(): # generator of terms
        an, seen, s, m = 0, {0}, "0", 1
        while True:
            yield an
            an = next(k for k in count(m) if k not in seen and cond(s[-1]+str(k)))
            seen.add(an); s += str(an)
            while m in seen or not cond(str(m)): m += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Apr 19 2025

A342046 When a digit d is prime, the next digit is > d.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 34, 13, 40, 14, 15, 60, 16, 17, 80, 18, 19, 23, 41, 24, 25, 61, 26, 27, 81, 28, 29, 35, 62, 36, 37, 82, 38, 39, 42, 43, 44, 45, 63, 46, 47, 83, 48, 49, 56, 57, 84, 58, 59, 64, 65, 66, 67, 85, 68, 69, 78, 79, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Eric Angelini, Feb 26 2021

Keywords

Comments

After a(1) = 0, the sequence is always extended with the smallest positive integer not yet present that doesn't lead to a contradiction.

Crossrefs

Cf. A342042, A342043, A342044, A342045 and A342047 (variations on the same idea).

Programs

  • PARI
    See Links section.

A342047 When a digit d is prime, the next digit is < d.

Original entry on oeis.org

0, 1, 2, 10, 3, 11, 4, 5, 12, 13, 14, 6, 7, 15, 16, 8, 9, 17, 18, 19, 20, 21, 30, 31, 32, 100, 40, 41, 42, 101, 43, 102, 103, 104, 44, 45, 46, 47, 48, 49, 50, 51, 52, 105, 106, 53, 107, 54, 60, 61, 62, 108, 63, 109, 64, 65, 110, 66, 67, 68, 69, 70, 71, 72, 111, 73, 112, 113, 114, 74, 75, 115, 116
Offset: 1

Views

Author

Eric Angelini, Feb 26 2021

Keywords

Comments

After a(1) = 0, the sequence is always extended with the smallest positive integer not yet present that doesn't lead to a contradiction.

Crossrefs

Cf. A342042, A342043, A342044, A342045 and A342046 (variations on the same idea).

Programs

  • PARI
    See Links section.

A377917 Number of n-digit terms in A377912.

Original entry on oeis.org

10, 66, 489, 3631, 26951, 200045, 1484850, 11021410, 81807240, 607220362, 4507138581, 33454573430, 248319075015, 1843166918425, 13681044394077, 101548575900358, 753751904485831, 5594779921615960, 41527672679871145, 308242258385100002, 2287951231622970075, 16982489246315828049
Offset: 1

Views

Author

Keywords

Comments

Also number of n-digit terms in A342042.
a(1149) has 1001 digits. - Michael S. Branicky, Nov 30 2024
The terms of A377912 as decimal digit strings are a regular language so can be counted using the transitions in a state machine matching those strings. - Kevin Ryde, Dec 01 2024

Examples

			The 66 two-digit terms in A377912 are
  10,11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
  38,39,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,67,68,69,70,71,72,73,74,
  75,76,77,78,79,89,90,91,92,93,94,95,96,97,98,99.
There is an obvious division into 5 blocks of size 10 and blocks of sizes 7, 5, 3, and 1.
		

Crossrefs

First differences of A377918.

Programs

  • Mathematica
    LinearRecurrence[{5, 15, 20, 15, 6, 1}, {10, 66, 489, 3631, 26951, 200045, 1484850}, 25] (* Paolo Xausa, Dec 01 2024 *)

Formula

From Kevin Ryde, Dec 01 2024: (Start)
a(n) = 5*a(n-1) + 15*a(n-2) + 20*a(n-3) + 15*a(n-4) + 6*a(n-5) + a(n-6) for n>=8.
G.f.: -1 + x + (1+x)^4 / (1 - 5*x - 15*x^2 - 20*x^3 - 15*x^4 - 6*x^5 - x^6). (End)

Extensions

a(6) and beyond from Michael S. Branicky, Nov 30 2024
Previous Showing 11-20 of 22 results. Next