A350845
Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 144, 147, 150, 156, 162, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258, 260, 264, 266, 270
Offset: 1
The terms and corresponding partitions begin:
6: (2,1)
12: (2,1,1)
18: (2,2,1)
21: (4,2)
24: (2,1,1,1)
30: (3,2,1)
36: (2,2,1,1)
42: (4,2,1)
48: (2,1,1,1,1)
54: (2,2,2,1)
60: (3,2,1,1)
63: (4,2,2)
65: (6,3)
66: (5,2,1)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
90: (3,2,2,1)
96: (2,1,1,1,1,1)
The strict complement is counted by
A350840.
These partitions are counted by
A350846.
A000045 = sets containing n with all differences > 2.
A325160 ranks strict partitions with no successions, counted by
A003114.
Cf.
A000929,
A001105,
A018819,
A045690,
A045691,
A094537,
A154402,
A319613,
A323093,
A337135,
A342094,
A342095,
A342098,
A342191.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]
A350846
Number of integer partitions of n with at least two adjacent parts of quotient 2.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 8, 12, 18, 25, 36, 48, 65, 89, 119, 157, 207, 269, 350, 448, 574, 729, 927, 1166, 1465, 1830, 2282, 2827, 3501, 4309, 5300, 6483, 7923, 9641, 11718, 14187, 17155, 20674, 24885, 29860, 35787, 42772, 51054, 60791, 72289, 85772, 101641
Offset: 0
The a(3) = 1 through a(9) = 12 partitions:
(21) (211) (221) (42) (421) (422) (63)
(2111) (321) (2221) (521) (621)
(2211) (3211) (3221) (3321)
(21111) (22111) (4211) (4221)
(211111) (22211) (5211)
(32111) (22221)
(221111) (32211)
(2111111) (42111)
(222111)
(321111)
(2211111)
(21111111)
Cf.
A000929,
A003000,
A003114,
A018819,
A045690,
A045691,
A116931,
A120641,
A154402,
A323093,
A342094,
A342095,
A342096,
A342098.
-
Table[Length[Select[IntegerPartitions[n], MemberQ[Divide@@@Partition[#,2,1],2]&]],{n,0,30}]
A342516
Number of strict integer partitions of n with weakly increasing first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 12, 14, 15, 17, 17, 21, 22, 26, 29, 31, 32, 35, 38, 42, 45, 48, 51, 58, 59, 63, 70, 76, 80, 88, 94, 98, 105, 113, 121, 129, 133, 143, 153, 159, 166, 183, 189, 195, 210, 221, 231, 248, 262, 273, 284, 298, 312
Offset: 0
The partition (6,3,2,1) has first quotients (1/2,2/3,1/2) so is not counted under a(12), even though the first differences (-3,-1,-1) are weakly increasing.
The a(1) = 1 through a(13) = 11 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
61 71 72 82 83 93 94
421 521 81 91 92 A2 A3
621 532 A1 B1 B2
721 632 732 C1
821 921 643
832
931
A21
The version for differences instead of quotients is
A179255.
The non-strict ordered version is
A342492.
The strictly increasing version is
A342517.
The weakly decreasing version is
A342519.
A000929 counts partitions with all adjacent parts x >= 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict:
A342095).
Cf.
A000005,
A003114,
A003242,
A005117,
A057567,
A067824,
A238710,
A253249,
A318991,
A318992,
A342528.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342519
Number of strict integer partitions of n with weakly decreasing first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 12, 14, 15, 18, 18, 21, 25, 29, 32, 38, 40, 44, 51, 57, 61, 66, 73, 77, 89, 97, 104, 115, 124, 135, 147, 160, 174, 193, 206, 218, 238, 254, 272, 293, 313, 331, 353, 381, 408, 436, 468, 499, 532, 569, 610, 651, 694, 735, 783
Offset: 0
The strict partition (10,7,4,2,1) has first quotients (7/10,4/7,1/2,1/2) so is counted under a(24), even though the first differences (-3,-3,-2,-1) are weakly increasing.
The a(1) = 1 through a(13) = 14 strict partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
321 61 71 72 82 83 93 94
421 431 81 91 92 A2 A3
432 541 A1 B1 B2
531 631 542 543 C1
4321 641 642 652
731 651 742
741 751
831 841
5421 931
5431
6421
The non-strict ordered version is
A069916.
The version for differences instead of quotients is
A320382.
The weakly increasing version is
A342516.
The strictly decreasing version is
A342518.
A000005 counts constant partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A057567 counts strict chains of divisors with weakly increasing quotients.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict:
A342095).
A342528 counts compositions with alternately weakly increasing parts.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
Comments