A155744 Triangle T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k), read by rows.
3, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 48, 143, 48, 1, 1, 274, 1835, 1835, 274, 1, 1, 1935, 23649, 51075, 23649, 1935, 1, 1, 15861, 310639, 1195999, 1195999, 310639, 15861, 1, 1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1, 1, 1491876, 59942994, 535933124, 1510548249, 1510548249, 535933124, 59942994, 1491876, 1
Offset: 0
Examples
3; 1, 1; 1, 3, 1; 1, 11, 11, 1; 1, 48, 143, 48, 1; 1, 274, 1835, 1835, 274, 1; 1, 1935, 23649, 51075, 23649, 1935, 1; 1, 15861, 310639, 1195999, 1195999, 310639, 15861, 1; 1, 146188, 4221286, 25753812, 45832899, 25753812, 4221286, 146188, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A155744:= func< n,k | (-1)^n*StirlingFirst(n, k)*StirlingFirst(n, n-k) + (-1)^k*StirlingFirst(n, n-k) + (-1)^(n-k)*StirlingFirst(n, k) >; [A155744(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 05 2021
-
Mathematica
T[n_, k_] = (-1)^(n-k)*StirlingS1[n, k] + (-1)^k*StirlingS1[n, n-k] + (-1)^n*StirlingS1[n, k]*StirlingS1[n, n-k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jun 05 2021 *)
-
Sage
def A155744(n,k): return stirling_number1(n, k)*stirling_number1(n, n-k) + stirling_number1(n, k) + stirling_number1(n, n-k) flatten([[A155744(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 05 2021
Formula
T(n, k) = (-1)^(n-k)*StirlingS1(n, k) + (-1)^k*StirlingS1(n, n-k) + (-1)^n*StirlingS1(n, k)*StirlingS1(n, n-k).
Sum_{k=0..n} T(n, k) = 2*n! + A342111(n). - G. C. Greubel, Jun 05 2021
Extensions
Edited by G. C. Greubel, Jun 05 2021
Comments