cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A343514 a(n) = Sum_{k=1..n} (k/gcd(n, k))^4.

Original entry on oeis.org

1, 2, 18, 84, 355, 645, 2276, 3192, 7413, 9400, 25334, 18395, 60711, 52747, 88760, 106688, 243849, 137790, 432346, 275570, 499867, 522513, 1151404, 561415, 1542125, 1214436, 1907502, 1569673, 3756719, 1344999, 5274000, 3451216, 4970577, 4690778, 7499154, 4217504, 12948595, 8207261, 11565572
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(k/GCD[n, k])^4, {k, 1, n}], {n, 1, 39}]
  • PARI
    a(n) = sum(k=1, n, (k/gcd(n, k))^4); \\ Michel Marcus, Apr 17 2021

Formula

a(n) = Sum_{d|n} A053820(d).

A343518 a(n) = Sum_{1 <= x_1 <= x_2 <= x_3 <= x_4 <= n} gcd(x_1, x_2, x_3 , x_4, n).

Original entry on oeis.org

1, 6, 17, 42, 74, 153, 216, 379, 531, 809, 1011, 1605, 1832, 2626, 3268, 4304, 4861, 6798, 7333, 9878, 11148, 13711, 14972, 19985, 20775, 25643, 28503, 34517, 35988, 46162, 46406, 57092, 61077, 70986, 75099, 92520, 91426, 108693, 115774, 135491, 135791, 165719, 163227, 193437
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Column 4 of A343516.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[# + 3, 4] &]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
  • PARI
    a(n) = sum(a=1, n, sum(b=1, a, sum(c=1, b, sum(d=1, c, gcd(gcd(gcd(gcd(n, a), b), c), d)))));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+3, 4));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-x^k)^5))

Formula

a(n) = Sum_{d|n} phi(n/d) * binomial(d+3, 4).
G.f.: Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^5.
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (10800*zeta(5)). - Vaclav Kotesovec, May 23 2021

A372937 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^5.

Original entry on oeis.org

1, 47, 323, 1744, 3749, 15181, 19207, 59648, 84969, 176203, 175691, 563312, 399853, 902729, 1210927, 1970176, 1503377, 3993543, 2606419, 6538256, 6203861, 8257477, 6716183, 19266304, 12105625, 18793091, 21172347, 33497008, 21218429, 56913569, 29552671, 64028672
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^4*sigma(d));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^4.
a(n) = Sum_{d|n} mu(n/d) * d^4 * sigma(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(4*e-4)*(p^e*(p^5-1) - (p^4-1))/(p-1).
Dirichlet g.f.: zeta(s-4)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, c = zeta(2)/zeta(6) = 315/(2*Pi^4) = 1.616892... (A157292). (End)
Mobius transformation of A280022. - R. J. Mathar, Jul 14 2025
Previous Showing 11-13 of 13 results.