cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A350138 Number of non-weakly alternating patterns of length n.

Original entry on oeis.org

0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
Conjecture: The directed cases, which count non-weakly up/down or non-weakly down/up patterns, are both equal to the strong case: A350252.

Examples

			The a(4) = 32 patterns:
  (1,1,2,3)  (2,1,1,2)  (3,1,1,2)  (4,1,2,3)
  (1,2,2,1)  (2,1,1,3)  (3,1,2,3)  (4,2,1,3)
  (1,2,3,1)  (2,1,2,3)  (3,1,2,4)  (4,3,1,2)
  (1,2,3,2)  (2,1,3,4)  (3,2,1,1)  (4,3,2,1)
  (1,2,3,3)  (2,3,2,1)  (3,2,1,2)
  (1,2,3,4)  (2,3,3,1)  (3,2,1,3)
  (1,2,4,3)  (2,3,4,1)  (3,2,1,4)
  (1,3,2,1)  (2,4,3,1)  (3,3,2,1)
  (1,3,3,2)             (3,4,2,1)
  (1,3,4,2)
  (1,4,3,2)
		

Crossrefs

The unordered version is A274230, complement A052955.
The strong case of compositions is A345192, ranked by A345168.
The strict case is A348615, complement A001250.
For compositions we have A349053, complement A349052, ranked by A349057.
The complement is counted by A349058.
The version for partitions is A349061, complement A349060.
The version for permutations of prime indices: A349797, complement A349056.
The version for ordered factorizations is A350139, complement A349059.
The strong case is A350252, complement A345194. Also the directed case?
A003242 = Carlitz compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A000670(n) - A349058(n).

Extensions

a(9) onwards from Andrew Howroyd, Jan 13 2024

A348381 Number of inseparable factorizations of n that are not a twin (x*x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347706 at a(216) = 3, A347706(216) = 4.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is inseparable if it has no permutation that is an anti-run, meaning there are always adjacent equal parts. Alternatively, a multiset is inseparable if its maximal multiplicity is at most one plus the sum of its remaining multiplicities.

Examples

			The a(n) factorizations for n = 96, 192, 384, 576:
  2*2*2*12      3*4*4*4         4*4*4*6           4*4*4*9
  2*2*2*2*6     2*2*2*24        2*2*2*48          2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*2*24        2*2*2*2*36
                2*2*2*2*2*6     2*2*2*2*3*8       2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*4*6       2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*2*12      2*2*2*2*2*18
                                2*2*2*2*2*2*6     2*2*2*2*3*12
                                2*2*2*2*2*3*4     2*2*2*2*2*2*9
                                2*2*2*2*2*2*2*3   2*2*2*2*2*3*6
                                                  2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions not of this type are counted by A325534 - A000035.
Partitions of this type are counted by A325535 - A000035.
Allowing twins gives A333487.
The case without an alternating permutation is A347706, with twins A348380.
The complement is counted by A348383, without twins A335434.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A344654 counts non-twin partitions without an alternating permutation.
A348382 counts non-anti-run compositions that are not a twin.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!MatchQ[#,{x_,x_}]&&Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n > 1) = A333487(n) - A010052(n).
a(2^n) = A325535(n) - 1 for odd n, otherwise A325535(n).

A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347050 at a(216) = 28, A347050(216) = 27.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.

Examples

			The a(216) = 28 factorizations:
  (2*2*2*3*3*3)  (2*2*2*3*9)  (2*2*6*9)   (3*8*9)   (3*72)   (216)
                 (2*2*3*3*6)  (2*3*4*9)   (4*6*9)   (4*54)
                 (2*3*3*3*4)  (2*3*6*6)   (2*2*54)  (6*36)
                              (3*3*4*6)   (2*3*36)  (8*27)
                              (2*2*3*18)  (2*4*27)  (9*24)
                              (2*3*3*12)  (2*6*18)  (12*18)
                                          (2*9*12)  (2*108)
                                          (3*3*24)
                                          (3*4*18)
                                          (3*6*12)
The a(270) = 20 factorizations:
  (2*3*3*3*5)  (2*3*5*9)   (5*6*9)   (3*90)   (270)
               (3*3*5*6)   (2*3*45)  (5*54)
               (2*3*3*15)  (2*5*27)  (6*45)
                           (2*9*15)  (9*30)
                           (3*3*30)  (10*27)
                           (3*5*18)  (15*18)
                           (3*6*15)  (2*135)
                           (3*9*10)
		

Crossrefs

Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
Partitions of this type are counted by A325534(n) + A000035(n + 1).
Partitions of this type are ranked by A335433 \/ A001248.
Partitions not of this type are counted by A325535(n) - A000035(n + 1).
Partitions not of this type are ranked by A345193 = A335448 \ A001248.
Not allowing twins gives A335434, complement A333487,
The case with an alternating permutation is A347050, no twins A348379.
The case without an alternating permutation is A347706, no twins A348380.
The complement is counted by A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A003242 counts anti-run compositions, ranked by A333489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}]

Formula

a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0.

A348382 Number of compositions of n that are not a twin (x,x) but have adjacent equal parts.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 17, 41, 88, 185, 387, 810, 1669, 3435, 7039, 14360, 29225, 59347, 120228, 243166, 491085, 990446, 1995409, 4016259, 8076959, 16231746, 32599773, 65437945, 131293191, 263316897, 527912139, 1058061751, 2120039884, 4246934012, 8505864639
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

A composition with no adjacent equal parts is also called a Carlitz composition, so these are non-twin, non-Carlitz compositions.

Examples

			The a(3) = 1 through a(6) = 17 compositions:
  (111)  (112)   (113)    (114)
         (211)   (122)    (222)
         (1111)  (221)    (411)
                 (311)    (1113)
                 (1112)   (1122)
                 (1121)   (1131)
                 (1211)   (1221)
                 (2111)   (1311)
                 (11111)  (2112)
                          (2211)
                          (3111)
                          (11112)
                          (11121)
                          (11211)
                          (12111)
                          (21111)
                          (111111)
		

Crossrefs

Allowing twins gives A261983, complement A003242.
The non-alternating case is A348377, difference A345195.
These compositions are ranked by A348612 \ A007582.
A001250 counts alternating permutations, complement A348615.
A007582 ranks twin compositions.
A011782 counts compositions, strict A032020.
A025047 counts alternating or wiggly compositions, complement A345192.
A051049 counts non-twin compositions, complement A000035(n+1).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    nn=15;CoefficientList[Series[1+x/(1-2x)-x^2/(1-x^2)-1/(1-Sum[x^k/(1+x^k),{k,1,nn}]),{x,0,nn}],x]

Formula

For n > 0, a(n) = A261983(n) - A059841(n).
O.g.f.: 1 + x/(1-2x) - x^2/(1-x^2) - 1/(1 - Sum_{k>0} x^k/(1+x^k)).

A345193 Heinz numbers of non-twin (x,x) inseparable partitions.

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 125, 128, 135, 136, 144, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 272, 288, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352, 368, 375, 376, 384, 400, 405
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
A multiset is separable if it has an anti-run permutation (no adjacent parts equal). This is equivalent to having maximal multiplicity greater than one plus the sum of the remaining multiplicities. For example, the partition (3,2,2,2,1) has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2), so is separable.

Examples

			The sequence of terms together with their prime indices begins:
      8: {1,1,1}          112: {1,1,1,1,4}        232: {1,1,1,10}
     16: {1,1,1,1}        125: {3,3,3}            240: {1,1,1,1,2,3}
     24: {1,1,1,2}        128: {1,1,1,1,1,1,1}    243: {2,2,2,2,2}
     27: {2,2,2}          135: {2,2,2,3}          248: {1,1,1,11}
     32: {1,1,1,1,1}      136: {1,1,1,7}          250: {1,3,3,3}
     40: {1,1,1,3}        144: {1,1,1,1,2,2}      256: {1,1,1,1,1,1,1,1}
     48: {1,1,1,1,2}      152: {1,1,1,8}          272: {1,1,1,1,7}
     54: {1,2,2,2}        160: {1,1,1,1,1,3}      288: {1,1,1,1,1,2,2}
     56: {1,1,1,4}        162: {1,2,2,2,2}        296: {1,1,1,12}
     64: {1,1,1,1,1,1}    176: {1,1,1,1,5}        297: {2,2,2,5}
     80: {1,1,1,1,3}      184: {1,1,1,9}          304: {1,1,1,1,8}
     81: {2,2,2,2}        189: {2,2,2,4}          320: {1,1,1,1,1,1,3}
     88: {1,1,1,5}        192: {1,1,1,1,1,1,2}    324: {1,1,2,2,2,2}
     96: {1,1,1,1,1,2}    208: {1,1,1,1,6}        328: {1,1,1,13}
    104: {1,1,1,6}        224: {1,1,1,1,1,4}      336: {1,1,1,1,2,4}
		

Crossrefs

A000041 counts integer partitions.
A001248 lists Heinz numbers of twins (x,x).
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344740 counts twins and partitions w/ wiggly permutation, rank: A344742.
A345164 counts wiggly permutations of prime indices (with twins: A344606).
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

Formula

Complement of A001248 in A335448.

A347707 Number of distinct possible integer reverse-alternating products of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 12, 14, 14, 15, 15, 18, 17, 19, 18, 20, 20, 22, 21, 25, 23, 26, 25, 28, 26, 29, 27, 31, 29, 32, 31, 34, 33, 35, 34, 38, 35, 41, 37, 42, 40, 43, 41, 45, 42, 46, 44, 48, 45, 50, 46, 52, 49, 53
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			Representative partitions for each of the a(16) = 11 alternating products:
         (16) -> 16
     (14,1,1) -> 14
     (12,2,2) -> 12
     (10,3,3) -> 10
      (8,4,4) -> 8
  (9,3,2,1,1) -> 6
     (10,4,2) -> 5
     (12,3,1) -> 4
  (6,4,2,2,2) -> 3
     (10,5,1) -> 2
        (8,8) -> 1
		

Crossrefs

The even-length version is A000035.
The non-reverse version is A028310.
The version for factorizations has special cases:
- no changes: A046951
- non-reverse: A046951
- non-integer: A038548
- odd-length: A046951 + A010052
- non-reverse non-integer: A347460
- non-integer odd-length: A347708
- non-reverse odd-length: A046951 + A010052
- non-reverse non-integer odd-length: A347708
The odd-length version is a(n) - A059841(n).
These partitions are counted by A347445, non-reverse A347446.
Counting non-integers gives A347462, non-reverse A347461.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A119620 counts partitions with alternating product 1, ranked by A028982.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A304792 counts distinct subset-sums of partitions.
A325534 counts separable partitions, complement A325535.
A345926 counts possible alternating sums of permutations of prime indices.

Programs

  • Mathematica
    revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[Union[revaltprod/@IntegerPartitions[n]],IntegerQ]],{n,0,30}]
Previous Showing 31-36 of 36 results.