cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 75 results. Next

A350251 Number of non-alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 8, 0, 0, 2, 1, 0, 2, 0, 2, 0, 2, 0, 9, 0, 0, 2, 2, 0, 2, 0, 5, 1, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(n) permutations for selected n:
n = 4    12    24     48      60     72      90     96       120
   ----------------------------------------------------------------
    22   223   2223   22223   2235   22233   2335   222223   22235
         322   2232   22232   2253   22323   2353   222232   22253
               2322   22322   2352   22332   2533   222322   22325
               3222   23222   2532   23223   3235   223222   22352
                      32222   3225   23322   3325   232222   22523
                              3522   32223   3352   322222   22532
                              5223   32232   3532            23225
                              5322   32322   5233            23522
                                     33222   5323            25223
                                             5332            25322
                                                             32225
                                                             32252
                                                             32522
                                                             35222
                                                             52223
                                                             52232
                                                             52322
                                                             53222
		

Crossrefs

The non-anti-run case is A336107, complement A335452.
The complement is counted by A345164, with twins A344606.
Positions of nonzero terms are A345171, counted by A345165.
Positions of zeros are A345172, counted by A345170.
Compositions of this type are counted by A345192, ranked by A345168.
Ordered factorizations of this type counted by A348613, complement A348610.
Compositions weakly of this type are counted by A349053, ranked by A349057.
The weak version is A349797, complement A349056.
The case that is also weakly alternating is A349798, compositions A349800.
Patterns of this type are counted by A350252, complement A345194.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions.
A008480 counts permutations of prime factors (ordered prime factorizations).
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344616 gives the alternating sum of prime indices, reverse A316524.
A349052/A129852/A129853 count weakly alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!wigQ[#]&]],{n,100}]

Formula

a(n) = A008480(n) - A345164(n).

A350139 Number of non-weakly alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 12, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 20, 0, 0, 0, 0, 0, 2, 0, 10, 0, 0, 0, 12, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

The first odd term is a(180) = 69, which has, for example, the non-weakly alternating ordered factorization 2*3*5*3*2.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n. Ordered factorizations are counted by A074206.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 24, 36, 48, 60:
  (2*3*4)  (2*3*6)    (2*3*8)    (2*5*6)
  (4*3*2)  (6*3*2)    (2*4*6)    (3*4*5)
           (2*3*3*2)  (6*4*2)    (5*4*3)
           (3*2*2*3)  (8*3*2)    (6*5*2)
                      (2*2*3*4)  (10*3*2)
                      (2*3*4*2)  (2*3*10)
                      (2*4*3*2)  (2*2*3*5)
                      (3*2*2*4)  (2*3*5*2)
                      (4*2*2*3)  (2*5*3*2)
                      (4*3*2*2)  (3*2*2*5)
                                 (5*2*2*3)
                                 (5*3*2*2)
		

Crossrefs

Positions of nonzero terms are A122181.
The strong version for compositions is A345192, ranked by A345168.
The strong case is A348613, complement A348610.
The version for compositions is A349053, complement A349052.
As compositions with ones allowed these are ranked by A349057.
The complement is counted by A349059.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts weakly alternating compositions, ranked by A345167.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating perms of prime factors, with twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 counts factorizations w/ alternating perm, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n],!whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349053(n).

A351010 Numbers k such that the k-th composition in standard order is a concatenation of twins (x,x).

Original entry on oeis.org

0, 3, 10, 15, 36, 43, 58, 63, 136, 147, 170, 175, 228, 235, 250, 255, 528, 547, 586, 591, 676, 683, 698, 703, 904, 915, 938, 943, 996, 1003, 1018, 1023, 2080, 2115, 2186, 2191, 2340, 2347, 2362, 2367, 2696, 2707, 2730, 2735, 2788, 2795, 2810, 2815, 3600, 3619
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and the corresponding compositions begin:
    0:         0  ()
    3:        11  (1,1)
   10:      1010  (2,2)
   15:      1111  (1,1,1,1)
   36:    100100  (3,3)
   43:    101011  (2,2,1,1)
   58:    111010  (1,1,2,2)
   63:    111111  (1,1,1,1,1,1)
  136:  10001000  (4,4)
  147:  10010011  (3,3,1,1)
  170:  10101010  (2,2,2,2)
  175:  10101111  (2,2,1,1,1,1)
  228:  11100100  (1,1,3,3)
  235:  11101011  (1,1,2,2,1,1)
  250:  11111010  (1,1,1,1,2,2)
  255:  11111111  (1,1,1,1,1,1,1,1)
		

Crossrefs

The case of twins (binary weight 2) is A000120.
The Heinz numbers of these compositions are given by A000290.
All terms are evil numbers A001969.
Partitions of this type are counted by A035363, any length A351004.
These compositions are counted by A077957(n-2), see also A016116.
The strict case (distinct twins) is A351009, counted by A032020 with 0's.
The anti-run case is A351011, counted by A003242 interspersed with 0's.
A011782 counts integer compositions.
A085207/A085208 represent concatenation of standard compositions.
A333489 ranks anti-runs, complement A348612.
A345167/A350355/A350356 rank alternating compositions.
A351014 counts distinct runs in standard compositions.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],And@@EvenQ/@Length/@Split[stc[#]]&]

A350355 Numbers k such that the k-th composition in standard order is up/down.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 13, 16, 20, 24, 25, 32, 40, 41, 48, 49, 50, 54, 64, 72, 80, 81, 82, 96, 97, 98, 102, 108, 109, 128, 144, 145, 160, 161, 162, 166, 192, 193, 194, 196, 198, 204, 205, 216, 217, 256, 272, 288, 289, 290, 320, 321, 322, 324, 326, 332, 333, 384
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A composition is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2).

Examples

			The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   6: (1,2)
   8: (4)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  20: (2,3)
  24: (1,4)
  25: (1,3,1)
  32: (6)
  40: (2,4)
  41: (2,3,1)
  48: (1,5)
  49: (1,4,1)
  50: (1,3,2)
  54: (1,2,1,2)
		

Crossrefs

The case of permutations is counted by A000111.
These compositions are counted by A025048, down/up A025049.
The strict case is counted by A129838, undirected A349054.
The weak version is counted by A129852, down/up A129853.
The version for anti-runs is A333489, a superset, complement A348612.
This is the up/down case of A345167, counted by A025047.
Counting patterns of this type gives A350354.
The down/up version is A350356.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions, unordered A000041.
A345192 counts non-alternating compositions, ranked by A345168.
A349052 counts weakly alternating compositions, complement A349053.
A349057 ranks non-weakly alternating compositions.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Patterns are A333217.

Programs

  • Mathematica
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
    				

Formula

A350356 Numbers k such that the k-th composition in standard order is down/up.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 16, 17, 18, 22, 32, 33, 34, 38, 44, 45, 64, 65, 66, 68, 70, 76, 77, 88, 89, 128, 129, 130, 132, 134, 140, 141, 148, 152, 153, 176, 177, 178, 182, 256, 257, 258, 260, 262, 264, 268, 269, 276, 280, 281, 296, 297, 304, 305, 306, 310, 352, 353
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A composition is down/up if it is alternately strictly increasing and strictly decreasing, starting with a decrease. For example, the partition (3,2,2,2,1) has no down/up permutations, even though it does have the anti-run permutation (2,1,2,3,2).

Examples

			The terms together with the corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   8: (4)
   9: (3,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  22: (2,1,2)
  32: (6)
  33: (5,1)
  34: (4,2)
  38: (3,1,2)
  44: (2,1,3)
  45: (2,1,2,1)
		

Crossrefs

The case of permutations is counted by A000111.
These compositions are counted by A025049, up/down A025048.
The strict case is counted by A129838, undirected A349054.
The weak version is counted by A129853, up/down A129852.
The version for anti-runs is A333489, a superset, complement A348612.
This is the down/up case of A345167, counted by A025047.
Counting patterns of this type gives A350354.
The up/down version is A350355.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions, unordered A000041.
A345192 counts non-alternating compositions, ranked by A345168.
A349052 counts weakly alternating compositions, complement A349053.
A349057 ranks non-weakly alternating compositions.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Patterns are A333217.

Programs

  • Mathematica
    doupQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],doupQ[stc[#]]&]

Formula

A349155 Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.

Original entry on oeis.org

0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.

Examples

			The terms and corresponding compositions begin:
     0: ()
     9: (3,1)
   130: (6,2)
   135: (5,1,1,1)
   141: (4,1,2,1)
   153: (3,1,3,1)
   177: (2,1,4,1)
   193: (1,6,1)
   225: (1,1,5,1)
  2052: (9,3)
  2059: (8,2,1,1)
  2062: (8,1,1,2)
  2069: (7,2,2,1)
  2074: (7,1,2,2)
  2079: (7,1,1,1,1,1)
  2089: (6,2,3,1)
  2098: (6,1,3,2)
  2103: (6,1,2,1,1,1)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
An unordered version is A348617, counted by A001523 up to 0's.
The positive version is A349153, unreversed A348614.
The unreversed version is A349154.
Positive unordered unreversed: A349159, counted by A000712 up to 0's.
A positive unordered version is A349160, counted by A006330 up to 0's.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- Heinz number is given by A333219.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]

A350137 Nonsquarefree numbers whose prime signature, except possibly the first and last parts, is all even.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 121, 124, 125, 126, 128, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also nonsquarefree numbers whose prime factors, taken in order and with multiplicity, are alternately constant and weakly increasing, starting with either.
Also the Heinz numbers of non-strict integer partitions whose part multiplicities, except possibly the first and last, are all even. These are counted by A349795.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

This is the nonsquarefree case of the complement of A349794.
These are the Heinz numbers of the partitions counted by A349795.
A version for compositions is A349799, counted by A349800.
A complementary version is A350140, counted by A349796.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A005117 = squarefree numbers, complement A013929.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A124010 = prime signature, sorted A118914.
A345164 = alternating permutations of prime indices, complement A350251.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weakly alternating permutations of prime indices.
A349058 = weakly alternating patterns, complement A350138.
A349060 = weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    Select[Range[100],!SquareFreeQ[#]&&(PrimePowerQ[#]||And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}])&]

A350140 Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.

Original entry on oeis.org

60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also Heinz numbers of non-weakly alternating non-strict integer partitions, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. These partitions are counted by A349796. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The terms together with their Heinz partitions begin (A-E = 10-14):
     60: (3211)      276: (9211)      420: (43211)
     84: (4211)      280: (43111)     440: (53111)
    120: (32111)     294: (4421)      444: (C211)
    132: (5211)      300: (33211)     456: (82111)
    140: (4311)      308: (5411)      460: (9311)
    150: (3321)      312: (62111)     476: (7411)
    156: (6211)      315: (4322)      480: (3211111)
    168: (42111)     336: (421111)    490: (4431)
    204: (7211)      340: (7311)      492: (D211)
    220: (5311)      348: (A211)      495: (5322)
    228: (8211)      364: (6411)      516: (E211)
    240: (321111)    372: (B211)      520: (63111)
    260: (6311)      378: (42221)     528: (521111)
    264: (52111)     380: (8311)      532: (8411)
    270: (32221)     408: (72111)     540: (322211)
		

Crossrefs

Including all nonsquarefree numbers gives A013929, complement A005117.
Subsets include A088860 and A110286.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A336568, counted by A347548.
A version for compositions allowing strict is A349057, counted by A349053.
Allowing strict partitions gives A349794, counted by A349061.
These partitions are counted by A349796.
The complement in nonsquarefree partitions is A350137, counted by A349795.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A096441 = weakly alternating 0-appended partitions.
A124010 = prime signature, sorted A118914.
A345164 = alternating permutations of prime indices, complement A350251.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052/A129852/A129853 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349058 = weakly alternating patterns, complement A350138.
A349060 = weakly alternating partitions, strong A349801.
A349798 = weakly but not strongly alternating perms of prime indices.

Programs

  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

Formula

Complement of A005117 in A349794.

A351011 Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2.

Original entry on oeis.org

0, 3, 10, 36, 43, 58, 136, 147, 228, 235, 528, 547, 586, 676, 698, 904, 915, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 2795, 3600, 3619, 3658, 3748, 3770, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 9444, 9451, 10768, 10787, 10826, 11144, 11155, 14368
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and standard compositions begin:
    0:           0  ()
    3:          11  (1,1)
   10:        1010  (2,2)
   36:      100100  (3,3)
   43:      101011  (2,2,1,1)
   58:      111010  (1,1,2,2)
  136:    10001000  (4,4)
  147:    10010011  (3,3,1,1)
  228:    11100100  (1,1,3,3)
  235:    11101011  (1,1,2,2,1,1)
  528:  1000010000  (5,5)
  547:  1000100011  (4,4,1,1)
  586:  1001001010  (3,3,2,2)
  676:  1010100100  (2,2,3,3)
  698:  1010111010  (2,2,1,1,2,2)
  904:  1110001000  (1,1,4,4)
  915:  1110010011  (1,1,3,3,1,1)
		

Crossrefs

The case of twins (binary weight 2) is A000120.
All terms are evil numbers A001969.
These compositions are counted by A003242 interspersed with 0's.
Partitions of this type are counted by A035457, any length A351005.
The Heinz numbers of these compositions are A062503.
Taking singles instead of twins gives A333489, complement A348612.
This is the anti-run case of A351010.
The strict case (distinct twins) is A351009, counted by A077957(n-2).
A011782 counts compositions.
A085207/A085208 represent concatenation of standard compositions.
A345167 ranks alternating compositions, counted by A025047.
A350355 ranks up/down compositions, counted by A025048.
A350356 ranks down/up compositions, counted by A025049.
A351014 counts distinct runs in standard compositions.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&]

A349154 Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.

Original entry on oeis.org

0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms and corresponding compositions begin:
       0: ()
      12: (1,3)
     160: (2,6)
     193: (1,6,1)
     195: (1,5,1,1)
     198: (1,4,1,2)
     204: (1,3,1,3)
     216: (1,2,1,4)
     240: (1,1,1,5)
    2304: (3,9)
    2561: (2,9,1)
    2563: (2,8,1,1)
    2566: (2,7,1,2)
    2572: (2,6,1,3)
    2584: (2,5,1,4)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
Except for 0, a subset of A345919.
The positive version is A348614, reverse A349153.
An unordered version is A348617, counted by A001523.
The reverse version is A349155.
A positive unordered version is A349159, counted by A000712 up to 0's.
A000346 = even-length compositions with alt sum != 0, complement A001700.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Necklaces are ranked by A065609, dual A333764, reversed A333943.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]
Previous Showing 61-70 of 75 results. Next