cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A347965 Dirichlet convolution of A003415 (arithmetic derivative) with A003961 (prime shift towards larger primes).

Original entry on oeis.org

0, 1, 1, 7, 1, 13, 1, 33, 11, 17, 1, 75, 1, 23, 20, 131, 1, 104, 1, 103, 26, 29, 1, 329, 17, 35, 82, 145, 1, 196, 1, 473, 32, 41, 30, 552, 1, 47, 38, 461, 1, 274, 1, 187, 181, 57, 1, 1259, 25, 194, 44, 229, 1, 682, 36, 659, 50, 65, 1, 1052, 1, 73, 247, 1611, 42, 352, 1, 271, 60, 366, 1, 2332, 1, 83, 245, 313, 42
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2021

Keywords

Crossrefs

Cf. also A347130, A347964.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347965(n) = sumdiv(n,d,A003415(n/d)*A003961(d));

Formula

a(n) = Sum_{d|n} A003415(d) * A003961(n/d).

A349123 a(n) = Sum_{d|n} A038040(n/d) * A003415(d), where A038040(n) = n*tau(n), and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 15, 1, 40, 12, 21, 1, 96, 1, 27, 24, 160, 1, 126, 1, 144, 30, 39, 1, 440, 20, 45, 90, 192, 1, 279, 1, 560, 42, 57, 36, 720, 1, 63, 48, 680, 1, 369, 1, 288, 234, 75, 1, 1680, 28, 270, 60, 336, 1, 810, 48, 920, 66, 93, 1, 1656, 1, 99, 306, 1792, 54, 549, 1, 432, 78, 531, 1, 3120, 1, 117, 330, 480, 54, 639
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

This sequence is the Dirichlet convolution of at least the following pairs of sequences:
- A003415 (the arithmetic derivative) with A038040,
- A000027 (the identity function) with A347130,
- A000203 (sigma) with A347131,
- A018804 with A319684,
- A060640 with A300251.

Crossrefs

Programs

  • Mathematica
    d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := DivisorSum[n, d[#]*(n/#)*DivisorSigma[0, n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A038040(n) = (n*numdiv(n));
    A349123(n) = sumdiv(n,d,A038040(d)*A003415(n/d));

Formula

a(n) = Sum_{d|n} A038040(d) * A003415(n/d).
a(n) = Sum_{d|n} d * A347130(n/d).
a(n) = Sum_{d|n} A000203(d) * A347131(n/d).
a(n) = Sum_{d|n} A018804(d) * A319684(n/d).
a(n) = Sum_{d|n} A060640(d) * A300251(n/d).
For all n >= 1, A348983(n) <= a(n) <= A349143(n).
a(n) = A003557(n) * A349124(n).

A348279 a(n) = Sum_{d|n} d*d', where d' is the arithmetic derivative of d (A003415).

Original entry on oeis.org

0, 2, 3, 18, 5, 35, 7, 114, 57, 77, 11, 243, 13, 135, 128, 626, 17, 467, 19, 573, 220, 299, 23, 1395, 255, 405, 786, 1047, 29, 1160, 31, 3186, 476, 665, 432, 2835, 37, 819, 640, 3389, 41, 2100, 43, 2427, 1937, 1175, 47, 7283, 693, 2577, 1040, 3333, 53, 5570, 896, 6295, 1276
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 09 2021

Keywords

Examples

			a(4) = 18; a(4) = 1*1' + 2*2' + 4*4' = 1*0 + 2*1 + 4*4 = 18.
		

Crossrefs

Cf. A003415 (arithmetic derivative).
Inverse Möbius transform of A190116.
Cf. also A347130.

Programs

  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    a(n) = sumdiv(n, d, d*ad(d)); \\ Michel Marcus, Oct 10 2021

Formula

a(p) = p for primes p since we have a(p) = 1*1' + p*p' = 1*0 + p*1 = p.
a(n) = Sum_{d|n} A190116(d). - Antti Karttunen, Dec 07 2021
Previous Showing 11-13 of 13 results.