cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A349176 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

135, 285, 435, 455, 855, 885, 1185, 1287, 1305, 1335, 1425, 1435, 1485, 1635, 2235, 2275, 2295, 2655, 2685, 2905, 2985, 3105, 3135, 3185, 3311, 3395, 3435, 3555, 3585, 4005, 4035, 4185, 4425, 4785, 4865, 4905, 4995, 5385, 5685, 5805, 5835, 5845, 5925, 6135, 6237, 6335, 6345, 6585, 6675, 6735, 7125, 7155, 7175, 7185
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Examples

			For n = 135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, A003961(135) = 5^3 * 7 = 875, and gcd(135,875) = gcd(240,875) = 5, which is larger than 1, therefore 135 is included in the sequence.
		

Crossrefs

Intersection of A104210 and A349174, or equally, intersection of A349166 and A349174.
Subsequence of A372567.

Programs

  • Mathematica
    Select[Range[1, 7200, 2], And[#1/#2 == #1/#3, #2 > 1] & @@ {#3, GCD[#1, #3], GCD[#2, #3]} & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349176(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (t>1)&&(gcd(u,sigma(n))==t));

A354827 Numerators of Dirichlet inverse of fraction A003961(n) / sigma(n).

Original entry on oeis.org

1, -1, -5, -2, -7, 5, -11, -8, -75, 7, -13, 5, -17, 11, 35, -1648, -19, 75, -23, 1, 55, 13, -29, 2, -245, 17, -225, 11, -31, -35, -37, -1664, 65, 19, 77, 75, -41, 23, 85, 4, -43, -55, -47, 13, 175, 29, -53, 412, -847, 245, 95, 17, -59, 225, 91, 11, 23, 31, -61, -5, -67, 37, 825, -7662464, 17, -65, -71, 19, 145, -77
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Because the ratio A003961(n) / A000203(n) is multiplicative, so is also its Dirichlet inverse (which also is a sequence of rational numbers). This sequence gives the numerators when presented in its lowest terms, while A354828 gives the denominators. See the examples.

Examples

			The ratio a(n)/A354828(n) for n = 1..21: 1, -1, -5/4, -2/7, -7/6, 5/4, -11/8, -8/35, -75/208, 7/6, -13/12, 5/14, -17/14, 11/8, 35/24, -1648/7595, -19/18, 75/208, -23/20, 1/3, 55/32.
		

Crossrefs

Cf. A354828 (denominators).
Cf. also A349627, A354365.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA354827(n) = (A003961(n)/sigma(n));
    vDirInv = DirInverseCorrect(vector(up_to,n,AuxA354827(n)));
    A354827(n) = numerator(vDirInv[n]);
    A354828(n) = denominator(vDirInv[n]);

A349168 Numbers k such that sigma(k) and A003961(k) share a prime power divisor that is not a unitary divisor of A003961(k). Here A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

8, 20, 24, 27, 32, 40, 44, 54, 56, 60, 72, 80, 88, 92, 96, 100, 104, 108, 116, 120, 128, 132, 135, 140, 152, 160, 164, 168, 171, 176, 180, 184, 188, 189, 196, 200, 216, 224, 232, 236, 240, 248, 260, 261, 264, 270, 272, 276, 280, 288, 296, 297, 300, 308, 312, 320, 325, 328, 332, 342, 344, 348, 351, 352, 360, 368, 376
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A342671(k) [= gcd(sigma(k), A003961(k))] and A349161(k) [= A003961(k)/A342671(k)] share a prime factor.
Numbers k for which A349163(k) and A349164(k) are not relatively prime.

Examples

			For n = 8 = 2^3, sigma(8) = 15 = 3*5, while A003961(8) = 3^3 = 27. These share the prime power divisor 3, which however is not a unitary divisor of 27, therefore 8 is included in this sequence.
For n = 32 = 2^5, sigma(32) = 63 = 3^2 * 7, while A003961(32) = 3^5 = 243. These share the prime power divisor 3^2, which however is not a unitary divisor of 243, therefore 32 is included.
For n = 40 = 2^3 * 5, sigma(40) = 90 = 2 * 3^2 * 5, while A003961(40) = 3^3 * 7 = 189. These share the prime power divisor 3^2, which however is not a unitary divisor of 189, therefore 40 is included.
		

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349168(n) = { my(u=A003961(n), x=gcd(u,sigma(n))); (1!=gcd(x,u/x)); };

A351544 a(n) is the largest unitary divisor of sigma(n) such that its every prime factor also divides A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 9, 1, 15, 1, 3, 5, 1, 1, 9, 1, 9, 1, 27, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 9, 1, 21, 1, 3, 1, 1, 7, 9, 1, 9, 1, 9, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 9, 1, 1, 1, 3, 5, 9, 1, 9, 1, 3, 1, 9, 1, 9, 1, 9, 13, 7, 1, 27
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351544(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); prod(k=1,#f~,if(!(u%f[k,1]), f[k,1]^f[k,2], 1)); };

Formula

a(n) = Product_{p^e || A000203(n)} p^(e*[p divides A003961(n)]), where [ ] is the Iverson bracket, returning 1 if p is a divisor of A003961(n), and 0 otherwise. Here p^e is the largest power of prime p dividing sigma(n).
a(n) = A000203(n) / A351546(n).
For all n >= 1, a(n) is a multiple of A351545(n).

A351547 a(n) = sigma(n) / A351545(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 15, 13, 2, 12, 28, 14, 8, 24, 31, 18, 13, 20, 6, 32, 4, 24, 12, 31, 14, 40, 56, 30, 8, 32, 63, 48, 2, 48, 91, 38, 20, 56, 90, 42, 32, 44, 84, 78, 8, 48, 124, 57, 31, 72, 98, 54, 40, 72, 120, 16, 10, 60, 24, 62, 32, 104, 127, 12, 16, 68, 14, 96, 16, 72, 195, 74, 38, 124, 140, 96, 56, 80, 186, 121
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351547(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); s/prod(k=1,#f~,if(!(u%f[k,1]) && (f[k,2]>=valuation(u,f[k,1])), f[k,1]^f[k,2], 1)); };

Formula

a(n) = A000203(n) / A351545(n).
a(n) = A351546(n) * A354997(n). - Antti Karttunen, Jul 09 2022

A354828 Denominators of Dirichlet inverse of fraction A003961(n) / sigma(n).

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 35, 208, 6, 12, 14, 14, 8, 24, 7595, 18, 208, 20, 3, 32, 12, 24, 7, 1116, 14, 832, 28, 30, 24, 32, 7595, 48, 18, 48, 728, 38, 20, 56, 15, 42, 32, 44, 42, 416, 24, 48, 1519, 3648, 1116, 72, 49, 54, 832, 72, 35, 16, 30, 60, 12, 62, 32, 1664, 33759775, 12, 48, 68, 63, 96, 48, 72, 182, 74, 38, 4464
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Crossrefs

Cf. A354827 (denominators).
Cf. also A349628, A354366.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA354827(n) = (A003961(n)/sigma(n));
    vDirInv = DirInverseCorrect(vector(up_to,n,AuxA354827(n)));
    A354828(n) = denominator(vDirInv[n]);

A355933 a(n) = A003973(n) / gcd(sigma(n), A003973(n)), where A003973(n) = sigma(A003961(n)) and A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 4, 3, 13, 4, 2, 3, 8, 31, 16, 7, 39, 9, 2, 2, 121, 10, 124, 6, 52, 9, 14, 5, 4, 57, 12, 39, 39, 16, 8, 19, 52, 7, 40, 2, 31, 21, 8, 27, 32, 22, 3, 12, 13, 124, 5, 9, 363, 7, 76, 5, 117, 10, 26, 14, 4, 9, 64, 31, 26, 34, 19, 93, 1093, 12, 7, 18, 130, 15, 8, 37, 248, 40, 28, 171, 78, 7, 18, 21, 484, 71, 88, 15, 117
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Comments

Numerator of ratio A003973(n) / A000203(n). This sequence gives the numerators when presented in its lowest terms, while A355934 gives the denominators. As both A000203 and A003973 are multiplicative sequences, their ratio is also: 1, 4/3, 3/2, 13/7, 4/3, 2/1, 3/2, 8/3, 31/13, 16/9, 7/6, 39/14, 9/7, 2/1, 2/1, 121/31, 10/9, 124/39, 6/5, etc.

Crossrefs

Cf. A000203, A003961, A003973, A355932, A355934 (denominators).
Cf. also A341525, A349161.

Programs

  • Mathematica
    f[p_, e_] := ((q = NextPrime[p])^(e + 1) - 1)/(q - 1); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n] / DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A355933(n) = { my(u=A003973(n)); (u/gcd(sigma(n), u)); };

Formula

a(n) = A003973(n) / A355932(n) = A003973(n) / gcd(A000203(n), A003973(n)).

A349177 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) = 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169, 173
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Comments

Odd numbers k for which k and A003961(k) are relatively prime, and also sigma(k) and A003961(k) are coprime.

Crossrefs

Subsequence of A349174 from this first differs by not having term 135 (see A349176).
Intersection of A319630 and A349174, or equally, intersection of A349165 and A349174.

Programs

  • Mathematica
    Select[Range[1, 173, 2], GCD[#1, #3] == GCD[#2, #3] == 1 & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349177(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (1==t)&&(gcd(u,sigma(n))==t));

A349175 Odd numbers k for which gcd(k, A003961(k)) <> gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

15, 27, 35, 45, 57, 65, 75, 77, 87, 99, 105, 143, 165, 171, 175, 177, 189, 195, 205, 221, 225, 231, 237, 245, 255, 261, 267, 297, 301, 315, 323, 325, 327, 345, 351, 375, 385, 399, 405, 415, 417, 429, 437, 447, 459, 465, 485, 495, 513, 525, 531, 537, 539, 555, 567, 585, 595, 597, 605, 609, 615, 621, 627, 629, 645
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers for which A348994(n) <> A349161(n).
Equally, odd numbers such that A319626(n) <> A349164(n).

Crossrefs

Cf. A349169, A349174 (complement among the odd numbers).

Programs

  • Mathematica
    Select[Range[1, 645, 2], GCD[#1, #3] != GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349175(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))!=gcd(u,n));
Previous Showing 11-19 of 19 results.