cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A349753 Odd numbers k for which A003961(k)-2k divides A003961(k)-sigma(k), where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 7, 25, 33, 55, 57, 69, 91, 93, 2211, 4825, 12639, 28225, 32043, 68727, 89575, 970225, 2245557, 16322559, 22799825, 48980427, 55037217, 60406599, 68258725, 325422273, 414690595, 569173299, 794579511, 10056372275, 10475647197, 10759889913, 11154517557
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2021

Keywords

Comments

Numbers k for which A326057(k) = gcd(A003961(k)-2k, A003961(k)-sigma(k)) is equal to abs(A252748(k)) = |A003961(k)-2k|.
The odd terms of A326134 form a subsequence of this sequence. Unlike in A326134, here we don't constrain the value of A252748(k) = A003961(k)-2k, thus allowing also values <= +1. Because of that, the odd terms of A048674 and A348514 are all included here, for example 57 and 68727 that occur in A348514, and 1, 3, 25, 33, 93, 970225, 325422273, 414690595 that occur in A048674.
Conjecture (1): This is a subsequence of A319630, in other words, for all terms k, gcd(k, A003961(k)) = 1.
Conjecture (2): Apart from 1, there are no common terms with A349169, which would imply that no odd perfect numbers exist.
None of the 36 initial terms is Zumkeller, in A083207, because all are deficient (in A005100). See also A337372. - Antti Karttunen, Dec 05 2024

Crossrefs

Subsequence of A378980 (its odd terms).

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := Divisible[(sn = s[n]) - DivisorSigma[1, n], sn - 2*n]; Select[Range[1, 10^6, 2], q] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349753(n) = if(!(n%2), 0, my(s = A003961(n), t = (s-(2*n)), u = s-sigma(n)); !(u%t));

A364286 Composite numbers k for which A324644(k)/A324198(k) = 2.

Original entry on oeis.org

33, 51, 69, 91, 99, 135, 141, 145, 153, 159, 187, 207, 213, 217, 285, 295, 303, 321, 339, 391, 411, 423, 427, 435, 445, 477, 507, 519, 573, 637, 639, 679, 681, 699, 771, 783, 799, 843, 855, 861, 885, 895, 901, 909, 933, 951, 963, 1017, 1041, 1057, 1059, 1071, 1081, 1083, 1147, 1149, 1173, 1185, 1195, 1203, 1207
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2023

Keywords

Comments

See comments in A351458.
All terms are odd. Of the 63 initial terms of A349169, only term 13923 occurs also in this sequence. The first common term with A332458 is 161257. - Antti Karttunen, Mar 10 2024

Crossrefs

Subsequence of A082686.

Programs

  • Mathematica
    f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[1350], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* Michael De Vlieger, Mar 10 2024 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA364286(n) = if(isprime(n), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u))); \\ Antti Karttunen, Mar 10 2024

A348993 a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 1, 3, 11, 2, 2, 5, 5, 1, 2, 29, 4, 11, 3, 1, 1, 2, 2, 1, 29, 5, 1, 5, 6, 2, 1, 5, 2, 4, 2, 55, 17, 3, 5, 3, 10, 1, 7, 5, 22, 2, 2, 29, 34, 29, 4, 25, 8, 1, 4, 3, 1, 6, 6, 1, 29, 1, 11, 113, 2, 2, 13, 5, 2, 2, 4, 11, 31, 17, 29, 15, 2, 5, 3, 29, 49, 10, 10, 5, 8, 7, 2, 3, 12, 22, 5, 5, 1, 2, 6, 5
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Crossrefs

Cf. A000203, A000265, A003961, A064989, A161942, A342671, A348992, A349162, A349169 (gives odd k for which a(k) = A319627(k)).

Programs

  • Mathematica
    Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#1/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 96] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };
    A348993(n) = A064989(A349162(n));

Formula

a(n) = A064989(A349162(n)) = A064989(A348992(n)).

A349176 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) > 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

135, 285, 435, 455, 855, 885, 1185, 1287, 1305, 1335, 1425, 1435, 1485, 1635, 2235, 2275, 2295, 2655, 2685, 2905, 2985, 3105, 3135, 3185, 3311, 3395, 3435, 3555, 3585, 4005, 4035, 4185, 4425, 4785, 4865, 4905, 4995, 5385, 5685, 5805, 5835, 5845, 5925, 6135, 6237, 6335, 6345, 6585, 6675, 6735, 7125, 7155, 7175, 7185
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Examples

			For n = 135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, A003961(135) = 5^3 * 7 = 875, and gcd(135,875) = gcd(240,875) = 5, which is larger than 1, therefore 135 is included in the sequence.
		

Crossrefs

Intersection of A104210 and A349174, or equally, intersection of A349166 and A349174.
Subsequence of A372567.

Programs

  • Mathematica
    Select[Range[1, 7200, 2], And[#1/#2 == #1/#3, #2 > 1] & @@ {#3, GCD[#1, #3], GCD[#2, #3]} & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349176(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (t>1)&&(gcd(u,sigma(n))==t));

A348990 a(n) = n / gcd(n, A003961(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 2, 7, 8, 9, 10, 11, 4, 13, 14, 3, 16, 17, 6, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 5, 4, 37, 38, 39, 40, 41, 14, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 18, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 22, 67, 68, 69, 10, 71, 8, 73, 74, 15, 76, 7, 26, 79, 80, 81, 82, 83, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Denominator of ratio A003961(n) / n. This ratio is fully multiplicative, and A348994(n) / a(n) = A319626(A003961(n)) / A319627(A003961(n)) gives it in its lowest terms.

Crossrefs

Cf. A000035, A000961, A002110, A003961, A319626, A319627, A319630 (fixed points), A322361, A349169 (where equal to A348992).
Cf. A348994 (numerators).

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {#, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 84] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A348990(n) = (n/gcd(n, A003961(n)));

Formula

a(n) = n / A322361(n) = n / gcd(n, A003961(n)).
a(n) = A319627(A003961(n)).
For all odd numbers n, a(n) = A003961(A319627(n)).
For all n >= 1, A000035(A348990(n)) = A000035(n). [Preserves the parity]

A386430 Odd numbers k such that there are no prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 7, 15, 21, 27, 31, 33, 57, 69, 87, 91, 93, 105, 127, 141, 177, 189, 195, 217, 231, 237, 273, 285, 301, 381, 399, 447, 465, 483, 495, 513, 567, 573, 597, 609, 627, 651, 717, 775, 819, 837, 861, 889, 903, 987, 1023, 1029, 1149, 1185, 1239, 1311, 1365, 1419, 1431, 1437, 1455, 1497, 1561, 1653, 1659, 1687, 1743
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2025

Keywords

Comments

Conjecture: After the initial 1, and apart from any hypothetical odd perfect numbers, all other terms are in A248150, i.e., sigma(k) == 0 (mod 4). This would imply (with the same caveat), that this sequence has no common terms with A228058 and no squares larger than one. This is true at least for the first 709203 terms (terms in range [1..2^34]).
Terms k such that A162642(k) = 1 are rare: 3, 7, 27, 31, 127, 567, 775, 8191, 27783, 131071, 524287, 2147483647, ... (odd terms of A387160).

Examples

			a(386548) = 5919068925 = 3^4 * 5^2 * 7^2 * 11^2 * 17 * 29. sigma(5919068925) = 15355618740 = 2^2 * 3^4 * 5 * 7 * 11^2 * 19^2 * 31. The "don't care primes" is given by A003961(A007947(5919068925))) = 2947945 = 5*7*11*13*19*31, thus only odd prime factor that matters here is 3, which in case has the same exponent (4) in both n = 5919068925 and sigma(n). In a way, this number is very close to satisfying Euler's criterion for odd perfect numbers (A228058), except that it has two unitary prime factors of the form 4k+1, instead of just one, apart from the square factor. Both n/17 and n/29 are in A228058.
		

Crossrefs

Odd terms of A351554.
Cf. A349169 (subsequence).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA386430(n) = ((n%2) && (0==A351555(n)));

Formula

{k | k odd, A351555(k) = 0}.

A351548 a(n) = A349745(n) divided by 2 if it is even, and 0 if A349745(n) is odd.

Original entry on oeis.org

0, 60, 108, 336, 1232, 11088, 114240, 261888, 320320, 418880, 2790720, 2882880, 3769920, 6499584, 9801792, 16930368, 19171152, 35672000, 47736000, 51068160, 98654400, 110046720, 172540368, 229909120, 403504640, 487788480, 738152448, 755415680, 886792320, 1960686000, 2070484416, 2339064000, 2889432000
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2022

Keywords

Comments

Questions: Are all nonzero terms abundant (in A005101)? Are all terms even? Could either be proved? See also comments in A351538 and in A351549.
The terms a(2) .. a(52) are all also practical (A005153) and Zumkeller (A083207). - Antti Karttunen, Dec 05 2024

Crossrefs

Cf. A005101, A005153, A083207, A326051 (all six known terms are present here), A329963, A349169, A349745, A351458, A351459, A351538.
Cf. also A351549.

Programs

Formula

a(n) = 0 if A349745(n) is odd, a(n) = A349745(n)/2 otherwise.

A349177 Odd numbers k for which gcd(k, A003961(k)) = gcd(sigma(k), A003961(k)) = 1, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169, 173
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2021

Keywords

Comments

Odd numbers k for which k and A003961(k) are relatively prime, and also sigma(k) and A003961(k) are coprime.

Crossrefs

Subsequence of A349174 from this first differs by not having term 135 (see A349176).
Intersection of A319630 and A349174, or equally, intersection of A349165 and A349174.

Programs

  • Mathematica
    Select[Range[1, 173, 2], GCD[#1, #3] == GCD[#2, #3] == 1 & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349177(n) = if(!(n%2),0,my(u=A003961(n),t=gcd(u,n)); (1==t)&&(gcd(u,sigma(n))==t));

A349746 Numbers k for which k * gcd(sigma(k), u) is equal to sigma(k) * gcd(k, u), where u is obtained by shifting the prime factorization of k two steps toward larger primes [with u = A003961(A003961(k))].

Original entry on oeis.org

1, 11466, 114660, 411264, 804384, 871416, 4999680, 46332000, 176417280, 378069120, 396168192, 485188704, 709430400, 2004912000, 3921372000, 5600534400, 6128179200, 6956471808, 7556976000, 7746979968, 9904204800, 14092001280, 14182439040, 23423662080, 31998395520
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2021

Keywords

Comments

Sigma preserves both the 2-adic and 3-adic valuation of the terms of this sequence.
All 65 known 5-multiperfect numbers (A046060) are included in this sequence, as well as the smallest 7-multiperfect number, 141310897947438348259849402738485523264343544818565120000 = A007539(7), and probably the majority of other p-multiperfect numbers as well, where p is a prime > 3. However, any term that is in A349747 is not included in this sequence.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := n * GCD[(sigma = DivisorSigma[1, n]), (u = s[n])] == sigma * GCD[n, u]; Select[Range[10^6], q] (* Amiram Eldar, Dec 01 2021 *)
  • PARI
    A003961twice(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(1+nextprime(1+f[i, 1]))); factorback(f); };
    isA349746(n) = { my(s=sigma(n),u=A003961twice(n)); (n*gcd(s,u) == (s*gcd(n,u))); };

Formula

For all n >= 1, A007814(A000203(a(n))) = A007814(a(n)) and A007949(A000203(a(n))) = A007949(a(n)). [See comment]

Extensions

a(15)-a(25) from Martin Ehrenstein, Dec 17 2021

A349175 Odd numbers k for which gcd(k, A003961(k)) <> gcd(sigma(k), A003961(k)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.

Original entry on oeis.org

15, 27, 35, 45, 57, 65, 75, 77, 87, 99, 105, 143, 165, 171, 175, 177, 189, 195, 205, 221, 225, 231, 237, 245, 255, 261, 267, 297, 301, 315, 323, 325, 327, 345, 351, 375, 385, 399, 405, 415, 417, 429, 437, 447, 459, 465, 485, 495, 513, 525, 531, 537, 539, 555, 567, 585, 595, 597, 605, 609, 615, 621, 627, 629, 645
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Odd numbers for which A348994(n) <> A349161(n).
Equally, odd numbers such that A319626(n) <> A349164(n).

Crossrefs

Cf. A349169, A349174 (complement among the odd numbers).

Programs

  • Mathematica
    Select[Range[1, 645, 2], GCD[#1, #3] != GCD[#2, #3] & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349175(n) = if(!(n%2),0,my(u=A003961(n)); gcd(u,sigma(n))!=gcd(u,n));
Previous Showing 11-20 of 20 results.