cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326057 a(n) = gcd(A003961(n)-2n, A003961(n)-sigma(n)), where A003961(n) is fully multiplicative function with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 1, 43, 1, 3, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 19, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 5, 7, 1, 1, 3, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2019

Keywords

Comments

Terms a(n) larger than 1 and equal to A252748(n) occur at n = 6, 28, 69, 91, 496, ..., see A326134. See also A349753.
Records 1, 3, 43, 45, 2005, 79243, ... occur at n = 1, 6, 28, 360, 496, 8128, ...

Crossrefs

Programs

  • Mathematica
    Array[GCD[#3 - #1, #3 - #2] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 78] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A252748(n) = (A003961(n) - (2*n));
    A286385(n) = (A003961(n) - sigma(n));
    A326057(n) = gcd(A252748(n), A286385(n));

Formula

a(n) = gcd(A252748(n), A286385(n)) = gcd(A003961(n) - 2n, A003961(n) - A000203(n)).
a(n) = gcd(A252748(n), A033879(n)) = gcd(A286385(n), A033879(n)). [Also A033880 can be used] - Antti Karttunen, May 06 2024

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A378980 Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 25, 26, 28, 33, 46, 55, 57, 69, 91, 93, 496, 1034, 1054, 1558, 2211, 2626, 4825, 8128, 11222, 12046, 12639, 28225, 32043, 68727, 89575, 970225, 1392386, 2245557, 8550146, 12371554, 16322559, 22799825, 33550336, 48980427, 51326726, 55037217, 60406599, 68258725, 142901438, 325422273, 342534446
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2024

Keywords

Comments

Numbers k such that A252748(k) divides A286385(k).
Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.

Crossrefs

Positions of 0's in A378981.
Subsequence of A263837.
Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).
Cf. also A378983.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* Amiram Eldar, Dec 19 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };
    isA378980(n) = !A378981(n);

A326134 Numbers k such that A326057(k) is equal to A252748(k) and A252748(k) is not 1.

Original entry on oeis.org

6, 28, 69, 91, 496, 2211, 4825, 8128, 12639, 22799825, 33550336, 60406599, 68258725, 569173299, 794579511, 984210266, 2830283326, 8589869056, 10759889913, 80295059913, 85871289682
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2019

Keywords

Comments

No other terms below 3221225472.
Numbers k such that A252748(k) [= A003961(k) - 2*k] <> 1 (i.e., k is not in A348514), and A286385(k) [= A003961(k) - A000203(k)] = m*A252748(k) for some positive integer m. Note that this entails that k is nonabundant (A000203(k) <= 2*k) and primeshift-abundant (A252748(k) > 2), thus this is a subsequence of A341614. - revised Dec 13 2024
This is a subsequence of A378980, see further comments there. - Antti Karttunen, Dec 13 2024

Examples

			28 is a term as A252748(28) = 43 > 1 and A286385(28) = 43, which is a multiple of 43.
69 is a term as A252748(69) = 7 > 1 and A286385(69) = 49 is a multiple of 7.
91 is a term as A252748(91) = 5 > 1 and A286385(91) = 75 is a multiple of 5.
		

Crossrefs

Subsequence of the following sequences: A246282, A341614, A378980.
Odd terms form a subsequence of A349753.

Programs

  • Mathematica
    Select[Range[10^5], And[#3 - #1 != 1, GCD[#3 - #1, #3 - #2] == #3 - #1] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    isA326134(n) = { my(s = A003961(n), t = (s-(2*n)), u = s-sigma(n)); ((1!=t)&&!(u%t)&&((u/t)>0)); };

Extensions

a(18) from Antti Karttunen, Dec 14 2024
a(19)..a(21) from Antti Karttunen (from the b-file of A378980 computed by Amiram Eldar), Dec 20 2024

A372562 Square array A(n, k) = A246278(1+n, k) - 2*A246278(n, k), read by falling antidiagonals, where A246278 is the prime shift array.

Original entry on oeis.org

-1, 1, -1, 3, 7, -3, 11, 5, -1, -3, 1, 71, 7, 23, -9, 21, 13, 93, -11, -73, -9, 5, 85, -19, 645, -65, -49, -15, 49, -1, 189, 5, -465, -119, -217, -15, 39, 463, -11, 495, -127, 519, -209, -193, -17, 23, 95, 1151, -29, -273, -103, -2967, -207, -217, -27, -5, 149, 357, 9839, -119, -255, -231, -1551, -435, -721, -25
Offset: 1

Views

Author

Antti Karttunen, May 21 2024

Keywords

Comments

For all k >= 1, A(1+A336836(2*k), k) < 0, and it is the topmost negative number of the column k.
In those columns k where 2k is in A104210, 6, 12, 18, 24, ..., there is present a "prime thread" of successive primes (see the example).

Examples

			The top left corner of the array:
k=    1     2     3      4     5      6     7       8      9     10    11      12
2k=   2     4     6      8    10     12    14      16     18     20    22      24
--+-------------------------------------------------------------------------------
1 |  -1,    1,    3,    11,    1,    21,    5,     49,    39,    23,   -5,     87,
2 |  -1,    7,    5,    71,   13,    85,   -1,    463,    95,   149,    7,    605,
3 |  -3,   -1,    7,    93,  -19,   189,  -11,   1151,   357,    87,  -37,   2023,
4 |  -3,   23,  -11,   645,    5,   495,  -29,   9839,   165,   783,  -13,   9757,
5 |  -9,  -73,  -65,  -465, -127,  -273, -119,   -721,    39,  -903, -129,   2743,
6 |  -9,  -49, -119,   519, -103,  -255, -105,  26399, -1377,   225, -227,  18649,
7 | -15, -217, -209, -2967, -231, -2679, -397, -36721, -2223, -2825, -351, -28937,
...
Terms of column 9: 39 (3*13), 95 (5*19), 357 (3*7*17), 165 (3*5*11), 39 (3*13), -1377 (- 3^4 * 17), -2223 (- 3^2 * 13 * 19), ..., show an ascending "prime thread" (3, 5, 7, 11, 13, 17, 19, ...) that is mentioned in comments.
		

Crossrefs

Cf. A062234 (column 1 when values are negated).
Cf. also A252750 (same terms in irregular triangle), A372563.
See also conjecture 1 in A349753.

Programs

  • PARI
    up_to = 66;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A252748(n) = (A003961(n) - (2*n));
    A372562sq(row,col) = A252748(A246278sq(row,col));
    A372562list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372562sq(col,(a-(col-1))))); (v); };
    v372562 = A372562list(up_to);
    A372562(n) = v372562[n];

Formula

A(n,k) = A252748(A246278(n,k)).

A378981 a(n) = (A003961(n)-sigma(n)) mod (A003961(n)-2*n), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 5, 0, 1, 17, 3, 4, 1, 1, 1, 36, 3, 21, 10, 3, 5, 75, 0, 0, 14, 0, 1, 33, 5, 1, 0, 3, 1, 134, 3, 2, 1, 99, 1, 69, 3, 4, 12, 0, 5, 281, 18, 7, 2, 6, 5, 255, 0, 177, 0, 3, 1, 147, 5, 2, 22, 1, 2, 51, 3, 10, 0, 87, 1, 480, 5, 9, 26, 12, 3, 87, 3, 381, 41, 3, 5, 271, 25, 9, 16, 171, 7, 291, 0, 16, 0, 15, 12
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2024

Keywords

Crossrefs

Cf. A378980 (positions of 0's), A349753 (positions of 0's at odd n).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378981(n) = ((A003961(n)-sigma(n))%((2*n)-A003961(n)));

Formula

a(n) = A286385(n) mod -A252748(n) = (A003961(n)-A000203(n)) mod ((2*n)-A003961(n)).

A372567 Odd numbers k such that k, sigma(k) and A003961(k) have a common divisor larger than 1, where A003961(n) is fully multiplicative function with a(prime(i)) = prime(i+1).

Original entry on oeis.org

135, 285, 435, 455, 675, 855, 885, 945, 1185, 1287, 1305, 1335, 1365, 1425, 1435, 1485, 1635, 1755, 1995, 2085, 2175, 2235, 2275, 2295, 2565, 2655, 2685, 2905, 2985, 3045, 3105, 3135, 3185, 3311, 3375, 3395, 3435, 3555, 3585, 3705, 3915, 4005, 4035, 4095, 4185, 4235, 4275, 4305, 4425, 4725, 4785, 4845, 4865, 4905
Offset: 1

Views

Author

Antti Karttunen, May 19 2024

Keywords

Comments

Most seem to be multiples of 5.

Examples

			135 = 3^3 * 5, sigma(135) = 240 = 2^4 * 3 * 5, and A003961(135) = 875 = 5^3 * 7 have 5 as their common divisor, therefore 135 is present in this sequence.
		

Crossrefs

Odd terms in A372566.
Cf. A000203, A003961, A349176 (subsequence).
Cf. also conjecture 1 in A349753.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA372567(n) = ((n%2) && (1A003961(n)])));
Showing 1-7 of 7 results.