cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A062234 From Bertrand's postulate: a(n) = 2*prime(n) - prime(n+1).

Original entry on oeis.org

1, 1, 3, 3, 9, 9, 15, 15, 17, 27, 25, 33, 39, 39, 41, 47, 57, 55, 63, 69, 67, 75, 77, 81, 93, 99, 99, 105, 105, 99, 123, 125, 135, 129, 147, 145, 151, 159, 161, 167, 177, 171, 189, 189, 195, 187, 199, 219, 225, 225, 227, 237, 231, 245, 251, 257, 267, 265, 273, 279
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 29 2001

Keywords

Comments

The theorem that a(n) > 0 for all n is known as "Bertrand's Postulate", and was proved by Tchebycheff in 1852.
The analog for Ramanujan primes is Paksoy's theorem that 2*R(n) - R(n+1) > 0 for n > 1. See A233822. - Jonathan Sondow, Dec 16 2013

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939.

Crossrefs

Cf. A000040, A001223, A215808 (prime terms), A233822.
When negated, forms the left edge of irregular triangle A252750, and also the leftmost column of square array A372562.

Programs

  • Haskell
    a062234 n = a062234_list !! (n-1)
    a062234_list = zipWith (-) (map (* 2) a000040_list) (tail a000040_list)
    -- Reinhard Zumkeller, May 31 2015
  • Maple
    a:= n-> (p-> 2*p(n)-p(n+1))(ithprime):
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2022
  • Mathematica
    Table[2*Prime[n]-Prime[n+1],{n,60}] (* James C. McMahon, Apr 27 2024 *)
    2#[[1]]-#[[2]]&/@Partition[Prime[Range[70]],2,1] (* Harvey P. Dale, Jul 29 2024 *)
    ListConvolve[{-1, 2}, Prime[Range[100]]] (* Paolo Xausa, Nov 02 2024 *)
  • PARI
    a(n) = 2*prime(n) - prime(n + 1); \\ Harry J. Smith, Aug 03 2009
    

Formula

a(n) = A000040(n) - A001223(n). - Zak Seidov, Sep 07 2012
a(n) = 2*A000040(n) - A000040(n+1). - Zak Seidov, May 12 2020
a(n) = A098764(n) - A000040(n). - Anthony S. Wright, Feb 19 2024

Extensions

Edited by N. J. A. Sloane, Feb 24 2023

A378980 Numbers k such that (A003961(k)-2*k) divides (A003961(k)-sigma(k)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 25, 26, 28, 33, 46, 55, 57, 69, 91, 93, 496, 1034, 1054, 1558, 2211, 2626, 4825, 8128, 11222, 12046, 12639, 28225, 32043, 68727, 89575, 970225, 1392386, 2245557, 8550146, 12371554, 16322559, 22799825, 33550336, 48980427, 51326726, 55037217, 60406599, 68258725, 142901438, 325422273, 342534446
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2024

Keywords

Comments

Numbers k such that A252748(k) divides A286385(k).
Conjecture: Apart from a(5)=6, this is a subsequence of A319630, i.e., for all terms k<>6, gcd(k, A003961(k)) = 1. See also A372562, A372566.

Crossrefs

Positions of 0's in A378981.
Subsequence of A263837.
Subsequences: A000396, A048674, A348514, A326134, A349753 (odd terms of this sequence).
Cf. also A378983.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[k_] := Module[{fct = FactorInteger[k], m, s}, s = Times @@ f1 @@@ fct; m = Times @@ f2 @@@ fct; Divisible[m - s, m - 2*k]]; q[1] = True; Select[Range[10^5], q] (* Amiram Eldar, Dec 19 2024 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A378981(n) = { my(u=A003961(n)); ((u-sigma(n))%((2*n)-u)); };
    isA378980(n) = !A378981(n);

A252750 a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).

Original entry on oeis.org

-1, -1, -1, 1, -3, 3, 7, 11, -3, 1, 5, 21, -1, 39, 71, 49, -9, 5, 13, 23, 7, 45, 85, 87, 23, 47, 95, 153, 93, 267, 463, 179, -9, -5, -1, 43, -19, 81, 149, 109, -11, 91, 175, 195, 189, 345, 605, 309, -73, 167, 311, 241, 357, 435, 775, 531, 645, 529, 965, 909, 1151, 1551, 2639, 601, -15, -1, 7, 29, -11, 63, 127, 185, 5, 53, 125, 327, 87, 573, 997, 407, -65, 121, 253, 413, 231
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Comments

From Antti Karttunen, May 21 2024: (Start)
Like A005940 itself, also this irregular table derived from it can be represented as a binary tree:
-1
|
................. -1 ..................
-1 1
-3 ......./ \....... 3 7 ......./ \....... 11
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
-3 1 5 21 -1 39 71 49
-9 5 13 23 7 45 85 87 23 47 95 153 93 267 463 179
etc.
(End)

Crossrefs

Cf. A252743 (characteristic function for positive terms), A252751 (partial sums of sequence b(0) = 0, b(n) = a(n), for n>0).
Cf. A062234 (when negated forms the left edge apart from the initial term), A003063 (right edge).
Cf. also A372562 (apart from the initial term, same data in square array).

Programs

Formula

a(n) = A003961(A005940(n+1)) - 2 * A005940(n+1).
a(n) = A252748(A005940(n+1)).
Other identities. For all n >= 1:
sgn(a(n)) = (-1)^(1+A252743(n)).

Extensions

Term a(0) = -1 prepended by Antti Karttunen, May 21 2024

A378979 Square array A(n, k) = 2*A246278(n, k) - sigma(A246278(n, k)), read by falling antidiagonals. Deficiency applied to the prime shift array.

Original entry on oeis.org

1, 1, 2, 0, 5, 4, 1, 6, 19, 6, 2, 14, 22, 41, 10, -4, 10, 94, 58, 109, 12, 4, 12, 38, 286, 118, 155, 16, 1, 18, 102, 70, 1198, 190, 271, 18, -3, 41, 46, 394, 158, 2014, 286, 341, 22, -2, 26, 469, 94, 1284, 214, 4606, 394, 505, 28, 8, 22, 148, 2001, 178, 2452, 350, 6478, 614, 811, 30, -12, 22, 178, 630, 13177, 262, 4842, 502, 11614, 838, 929, 36
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2024

Keywords

Comments

Each column is strictly increasing.
For all k >= 1, A(1+A378985(k), k) > 0, and it is the topmost positive number of the column k.

Examples

			The top left corner of the array:
k=  |  1    2    3     4    5     6    7      8     9    10   11     12
2k= |  2    4    6     8   10    12   14     16    18    20   22     24
----+-------------------------------------------------------------------
  1 |  1,   1,   0,    1,   2,   -4,   4,     1,   -3,   -2,   8,   -12,
  2 |  2,   5,   6,   14,  10,   12,  18,    41,   26,   22,  22,    30,
  3 |  4,  19,  22,   94,  38,  102,  46,   469,  148,  178,  62,   502,
  4 |  6,  41,  58,  286,  70,  394,  94,  2001,  630,  476, 106,  2746,
  5 | 10, 109, 118, 1198, 158, 1284, 178, 13177, 1522, 1720, 218, 14110,
  6 | 12, 155, 190, 2014, 214, 2452, 262, 26181, 3216, 2762, 334, 31858,
  7 | 16, 271, 286, 4606, 350, 4842, 446, 78301, 5416, 5926, 478, 82294,
		

Crossrefs

Cf. A006093 (column 1), A306190 (column 2), A378978 (row 1), A378985 (row index of the topmost positive term in column n).
Cf. also arrays A341605, A341606 and A341607.
Cf. also A324055.

Programs

  • PARI
    up_to = 78;
    A033879(n) = (n+n-sigma(n));
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A378979sq(row,col) = A033879(A246278sq(row,col));
    A378979list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A378979sq(col,(a-(col-1))))); (v); };
    v378979 = A378979list(up_to);
    A378979(n) = v378979[n];

Formula

A(n, k) = A033879(A246278(n, k)) = 2*A246278(n, k) - A355927(n, k).
A(n, k) = A372563(n,k) - A372562(n, k).

A372563 Square array A(n, k) = A246278(1+n, k) - sigma(A246278(n, k)), read by falling antidiagonals, where A246278 is the prime shift array.

Original entry on oeis.org

0, 2, 1, 3, 12, 1, 12, 11, 18, 3, 3, 85, 29, 64, 1, 17, 23, 187, 47, 36, 3, 9, 97, 19, 931, 53, 106, 1, 50, 17, 291, 75, 733, 71, 54, 3, 36, 504, 35, 889, 31, 2533, 77, 148, 5, 21, 121, 1620, 65, 1011, 111, 1639, 187, 288, 1, 3, 171, 505, 11840, 59, 2197, 119, 4927, 179, 90, 5
Offset: 1

Views

Author

Antti Karttunen, May 21 2024

Keywords

Examples

			The top left corner of the array:
k=   1    2    3      4    5      6    7       8      9     10   11      12
2k=  2    4    6      8   10     12   14      16     18     20   22      24
---+-------------------------------------------------------------------------
1  | 0,   2,   3,    12,   3,    17,   9,     50,    36,    21,   3,     75,
2  | 1,  12,  11,    85,  23,    97,  17,    504,   121,   171,  29,    635,
3  | 1,  18,  29,   187,  19,   291,  35,   1620,   505,   265,  25,   2525,
4  | 3,  64,  47,   931,  75,   889,  65,  11840,   795,  1259,  93,  12503,
5  | 1,  36,  53,   733,  31,  1011,  59,  12456,  1561,   817,  89,  16853,
6  | 3, 106,  71,  2533, 111,  2197, 157,  52580,  1839,  2987, 107,  50507,
7  | 1,  54,  77,  1639, 119,  2163,  49,  41580,  3193,  3101, 127,  53357,
8  | 3, 148, 187,  4927, 113,  6197, 211, 142280,  8283,  4969, 183, 179083,
9  | 5, 288, 179, 11669, 305,  9481, 277, 414720,  6965, 13421, 239, 374459,
10 | 1,  90, 187,  4531, 131,  7685,  73, 190980, 12649,  6303, 137, 293947,
11 | 5, 376, 301, 19869, 247, 18395, 331, 919856, 17173, 17161, 425, 906981,
12 | 3, 274, 167, 16861, 255, 13189, 349, 899540, 10335, 17099, 367, 777083,
		

Crossrefs

Cf. A046933 (column 1).
Cf. also A355924, A372562.

Programs

  • PARI
    up_to = 66;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A286385(n) = (A003961(n)-sigma(n));
    A372563sq(row,col) = A286385(A246278sq(row,col));
    A372563list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372563sq(col,(a-(col-1))))); (v); };
    v372563 = A372563list(up_to);
    A372563(n) = v372563[n];

Formula

A(n, k) = A286385(A246278(n, k)) = A246278(1+n, k) - A355927(n, k).
Showing 1-6 of 6 results.