cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A258383 Run lengths of consecutive identical terms in A062234.

Original entry on oeis.org

2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2015

Keywords

Comments

a(A258437(n)) = n and a(m) != n for m < A258437(n). [Because of recent changes that were made to A258437, this comment may now need to be changed. - N. J. A. Sloane, Oct 31 2024]

Examples

			See A258432.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a258383 n = a258383_list !! (n-1)
    a258383_list = map length $ group a062234_list
  • Mathematica
    Map[Length, Most[Split[ListConvolve[{-1, 2}, Prime[Range[200]]]]]] (* Paolo Xausa, Oct 30 2024 *)

A258432 Smallest number m such that A062234(m) = A062234(m-1+k) for k = 1..A258383(n).

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2015

Keywords

Examples

			.       n | 1 2   3 4   5 6    7  8    9   10   11   12   13 14   15
. A062234 | 1 1   3 3   9 9   15 15   17   27   25   33   39 39   41
. --------+-----+-----+-----+-------+----+----+----+----+-------+----+-
. A258383 | 2   | 2   | 2   | 2     | 1  |  1 |  1 |  1 |  2    |  1 |
. A258432 | 1   | 3   | 5   | 7     | 9  | 10 | 11 | 12 | 13    | 15 |
. run #   | 1   | 2   | 3   | 4     | 5  |  6 |  7 |  8 |  9    | 10 |
		

Crossrefs

Programs

  • Haskell
    import Data.List (groupBy); import Data.Function (on))
    a258432 n = a258432_list !! (n-1)
    a258432_list = map (snd . head) $
                        groupBy ((==) `on` fst) $ zip a062234_list [1..]

A257762 Numbers n with property that A062234(n) = A062234(n+1).

Original entry on oeis.org

1, 3, 5, 7, 13, 26, 28, 43, 49, 64, 69, 78, 89, 93, 96, 116, 131, 134, 142, 148, 152, 155, 167, 182, 202, 206, 212, 225, 231, 234, 236, 238, 247, 253, 258, 281, 286, 302, 303, 311, 313, 330, 332, 333, 334, 336, 337, 356, 362, 384, 385, 390, 435, 438, 455, 458, 484, 492, 512, 516
Offset: 1

Views

Author

Zak Seidov, May 07 2015

Keywords

Comments

Numbers n with property that 2*prime(n)-prime(n+1) = 2*prime(n+1)-prime(n+2), or 2*prime(n)+prime(n+2) = 3*prime(n+1).
Numbers n with property that 2*A001223(n) = A001223(n+1). - Gionata Neri, May 22 2015
a(n) = A258432(m), where m such that A258383(m) = 2. - Reinhard Zumkeller, May 31 2015

Examples

			a(1) = A258437(A258432(2)) = 1.
		

Crossrefs

Programs

  • Haskell
    a257762 n = a257762_list !! (n-1)
    a257762_list = map a258432 $ filter ((== 2) . a258383) [1..]
    -- Reinhard Zumkeller, May 31 2015
  • Magma
    [n: n in [0..600] | 2*NthPrime(n)-NthPrime(n+1) eq 2*NthPrime(n+1)-NthPrime(n+2)]; // Vincenzo Librandi, May 12 2015
    
  • Maple
    Primes:= select(isprime,[2,(2*i+1 $ i=1..10^4)]):
    Gaps:= Primes[2..-1] - Primes[1..-2]:
    G2:= Gaps[2..-1] - 2*Gaps[1..-2]:
    ListTools:-SearchAll(0,G2); # Robert Israel, May 22 2015
  • Mathematica
    Select[Range@ 600, 2 Prime[#] - Prime[# + 1] == 2 Prime[# + 1] - Prime[# + 2] &] (* Michael De Vlieger, May 11 2015 *)

A257951 Numbers n with property that A062234(n)=A062234(n+1)=A062234(n+2)=A062234(n+3)=A062234(n+4).

Original entry on oeis.org

465460, 672832, 829363, 891802, 919088, 1703659, 2656715, 2669971, 3035410, 3223041, 3585960, 3608292, 3636024, 4047253, 4058989, 4232549, 4591286, 4785400, 4797700, 5054313, 5120280, 5599321, 5872369, 6089675, 6541163, 6963642, 7957852, 8234393, 9069087, 9082140, 9312431
Offset: 1

Views

Author

Zak Seidov, May 14 2015

Keywords

Comments

a(n) = A258432(m), where m such that A258383(m) = 5. - Reinhard Zumkeller, May 31 2015

Examples

			For k=465460..465464, 2*prime(k)-prime(k+1)=6824895.
a(1) = A258437(A258432(5)) = 465460.
		

Crossrefs

Programs

  • Haskell
    a257951 n = a257951_list !! (n-1)
    a257951_list = map a258432 $ filter ((== 5) . a258383) [1..]
    -- Reinhard Zumkeller, May 31 2015

Extensions

More terms from Zak Seidov, Jul 29 2015

A257892 Numbers n with property that A062234(n) = A062234(n+1) = A062234(n+2) = A062234(n+3).

Original entry on oeis.org

332, 878, 1999, 3949, 4524, 5953, 6576, 8676, 10068, 11840, 17107, 17208, 19034, 19525, 46771, 46828, 52767, 54567, 54927, 56879, 58695, 61748, 65926, 77168, 77676, 79722, 92775, 92823, 96099, 101607, 111007, 136141, 160095, 160418, 173404
Offset: 1

Views

Author

Zak Seidov, May 14 2015

Keywords

Comments

a(n) = A258432(m), where m such that A258383(m) = 4. - Reinhard Zumkeller, May 31 2015

Examples

			a(1) = A258437(A258432(4)) = 332. - _Reinhard Zumkeller_, May 31 2015
		

Crossrefs

Programs

A258437 Smallest number m such that A062234(m) = A062234(m-1+k) for k = 1..n.

Original entry on oeis.org

9, 1, 302, 332, 465460, 67928439
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2015

Keywords

Comments

From Michel Marcus, Feb 09 2022: (Start)
Previous name: "Smallest number m such that A258383(m) = n" was not ok. For instance, for a(1) the smallest m such that A258383(m)=1 is 5, then we have to sum up the first 5 terms 2+2+2+2+1 to get 9, as shown in the example table (whose 2nd and 3rd column names I edited too).
Note that prime([302, 332, 465460]) = [1997, 2237, 6824897] which is a subsequence of A090807. Then one can verify that primepi(1356705137 = A090807(7)) = 67928439 and primepi(3637803390827 = A090807(8)) = 130463972798 are good candidates for a(6) and a(7). a(6) has been confirmed by program. (End)

Examples

			   n |   f(n) | a(n) = A258432(f(n)) |     Run in A062234
  ---+--------+----------------------+--------------------------
   1 |      5 |       9 = A258469(1) | [17]
   2 |      1 |       1 = A257762(1) | [1, 1]
   3 |    265 |     302 = A258449(1) | [1995, 1995, 1995]
   4 |    290 |     332 = A257892(1) | [2235, 2235, 2235, 2235]
   5 | 440676 |  465460 = A257951(1) | [ ___ 5 x 6824895 ___ ]
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258437 = (+ 1) . fromJust . (`elemIndex` a258383_list)
    
  • PARI
    f(n) = 2*prime(n) - prime(n+1); \\ A062234
    lista(nn) = {my(vp=primes(nn)); my(v=vector(nn-1, k, 2*vp[k] - vp[k+1]), last=v[1], nb=1, list=List()); kill(vp); for (n=2, nn-1, if (v[n]==last, nb++, listput(list, nb); last=v[n]; nb=1);); Vec(list);} \\ A258383
    find(k, v) = {my(i=1); while (v[i] != k, i++); i;}
    listr(nn) = {my(v=lista(nn)); for (k=1, 6, my(pos = find(k, v)); print1(sum(i=1, pos, v[i])- k + 1, ", "););}
    listr(9*10^7) \\ Michel Marcus, Feb 09 2022

Formula

A258383(a(n)) = n and A258383(m) != n for m < a(n);
let m = A258432(a(n)): A062234(m) = A062234(m-1+k) for k = 1..n.

Extensions

New name and a(6) from Michel Marcus, Feb 09 2022

A258449 Numbers n such that A062234(n) = A062234(n+1) = A062234(n+2).

Original entry on oeis.org

302, 336, 384, 805, 1016, 1043, 1963, 2201, 2364, 2398, 2495, 2506, 2528, 2574, 2683, 2734, 3208, 4267, 4561, 4659, 5234, 5415, 5525, 5620, 5759, 5903, 6044, 6258, 6543, 7737, 7928, 8019, 8039, 8115, 8521, 8717, 8833, 9056, 9165, 9379, 9730, 10302, 10495
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2015

Keywords

Comments

a(n) = A258432(m), where m such that A258383(m) = 3.

Examples

			a(1) = A258437(A258432(3)) = 302.
		

Crossrefs

Programs

  • Haskell
    a258449 n = a258449_list !! (n-1)
    a258449_list = map a258432 $ filter ((== 3) . a258383) [1..]

A258469 Numbers m such that A062234(m) != A062234(m+1).

Original entry on oeis.org

9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 91
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2015

Keywords

Comments

a(n) = A258432(m), where m such that A258383(m) = 1.

Examples

			a(1) = A258437(A258432(1)) = 9.
		

Crossrefs

Programs

  • Haskell
    a258469 n = a258469_list !! (n-1)
    a258469_list = map a258432 $ filter ((== 1) . a258383) [1..]

A111005 Terms in A062234 that are powers > 1.

Original entry on oeis.org

9, 9, 27, 25, 81, 125, 225, 225, 361, 441, 1089, 1089, 1225, 1225, 2025, 2025, 2601, 3249, 3249, 3375, 3721, 5041, 6859, 7569, 7921, 12321, 13689, 13689, 15129, 18225, 21609, 21609, 30625, 31329, 38809, 42025, 47961, 53361, 59049, 65025, 65025
Offset: 1

Views

Author

Walter Kehowski, Oct 02 2005

Keywords

Examples

			a(20) = 2*prime(478) - prime(479) = 2*3391 - 3407 = 3375 = 15^3.
		

Crossrefs

Cf. A062234.

Programs

  • Maple
    with(numtheory); egcd := proc(n) local L; L:=map(proc(z) z[2] end, ifactors(n)[2]); igcd(op(L)) end: PW:=[]: cnt:=0: for z to 1 do for j from 1 to 50000 do x:=2*ithprime(j)-ithprime(j+1); if egcd(x)>1 then cnt:=cnt+1; PW:=[op(PW),[cnt,j,x]] fi od od; PW; map(proc(z) z[3] end, PW);
  • Mathematica
    fn[n_]:=2*Prime[n]-Prime[n+1];Select[fn[Range[3,7000]],ResourceFunction["PerfectPowerQ"][#]&] (* James C. McMahon, Apr 27 2024 *)
  • PARI
    lista(pmax) = {my(prev = 2, k); forprime(p = 3, pmax, k = 2*prev - p; if(ispower(k), print1(k, ", ")); prev = p);} \\ Amiram Eldar, Aug 02 2024

Extensions

Title modified by James C. McMahon, Apr 27 2024

A256274 Numbers k such that all values of A062234(k+i) are equal for i = 0..5, where A062234(n) = 2*prime(n) - prime(n+1).

Original entry on oeis.org

67928439, 266947136, 282959564, 290650720, 411522246, 412395369, 442605172, 469294445, 474377829, 484820862, 516574437, 540188314, 566750674, 611253120, 656844834, 717566734, 835153917, 930156158, 1195351247, 1463919418, 1524111225, 1684626377, 1744328226, 1785356368, 2025764074
Offset: 1

Views

Author

Zak Seidov, Jun 02 2015

Keywords

Comments

Subsequence of A257951: a(1) = 67928439 = A257951(166).

Crossrefs

Extensions

a(12)-a(25) from Michel Marcus, Feb 14 2022
Showing 1-10 of 33 results. Next