cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A378326 a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(n*k,k) / ((n-1)*k+1).

Original entry on oeis.org

1, 1, 3, 19, 219, 3901, 95838, 3022909, 116798643, 5350403737, 283728025998, 17104314563843, 1155635807408096, 86513627563199279, 7109252862969177287, 636268582522962837475, 61610670571434193189443, 6418044336586421956746033, 715718717341021991299583730
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-1, k-1]*Binomial[n*k, k]/((n-1)*k+1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).

A365194 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)^6).

Original entry on oeis.org

1, 1, 6, 52, 529, 5889, 69462, 853013, 10791018, 139659604, 1840435530, 24611295075, 333132371248, 4555465710569, 62839303262352, 873363902976309, 12218178082489873, 171918448407833112, 2431415226089290680, 34544425914499450493, 492807213597429920649
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*n-k+1, k)*binomial(n-1, n-k)/(6*n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*n-k+1,k) * binomial(n-1,n-k)/(6*n-k+1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(5*n+2*k+1,k) * binomial(n-1,n-k)/(5*n+2*k+1).
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(6*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Dec 26 2024

A378325 G.f. A(x) = Sum_{n>=0} a(n)*x^n, where a(n) = Sum_{k=0..n-1} [x^k] A(x)^k for n >= 1 with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 7, 41, 338, 3499, 42969, 606351, 9633640, 169888025, 3290314970, 69409429043, 1584105116525, 38894316619948, 1022411500472240, 28653072049382809, 852911635849385778, 26876978490909421289, 893929164892155754432, 31296785296935394097351, 1150551256823546563078988
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^k, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ after Paul D. Hanna

Formula

a(n) ~ c * n! / (n^alpha * LambertW(1)^n), where alpha = 2 - 2*LambertW(1) - 1/(1 + LambertW(1)) = 0.22760967581532... and c = 0.323194722450152336...

A371583 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x) )^2.

Original entry on oeis.org

1, 2, 13, 104, 940, 9166, 94044, 1000602, 10939780, 122161128, 1387361151, 15974899766, 186069556707, 2188416960148, 25953579753464, 310022550197360, 3726709235290628, 45047517497268968, 547217895030263028, 6676784544374859088, 81789906534091716353
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(n-1,n-k)/(5*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A349332.

A371913 G.f. A(x) satisfies A(x) = 1 - x/A(x)^4 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 2, 0, -6, 12, 67, -152, -740, 2296, 9017, -35979, -113936, 579516, 1454975, -9493390, -18317155, 157178640, 220172289, -2618995381, -2377680689, 43783556265, 19149194005, -732638868460, 16196837316, 12246524817736, -5891297294673
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n-5*k,n-k-1) for n > 0.

A371914 G.f. A(x) satisfies A(x) = 1 - x/A(x)^3 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 3, 7, 15, 43, 168, 626, 2005, 6245, 22266, 87365, 328727, 1154975, 4086410, 15464587, 60368094, 229327457, 847539610, 3174058754, 12277874065, 47912709420, 184171945435, 701491726600, 2700878181660, 10556457650417, 41330116314628
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(2*n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-5*k,n-k-1) for n > 0.

A371915 G.f. A(x) satisfies A(x) = 1 - x/A(x)^2 * (1 - A(x) - A(x)^5).

Original entry on oeis.org

1, 1, 4, 17, 80, 414, 2289, 13199, 78306, 474630, 2926744, 18304543, 115837726, 740379722, 4772461321, 30989448116, 202518745795, 1330961476358, 8791022012712, 58325109518331, 388523983047285, 2597516226459845, 17423367396517210, 117223205014488833
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, binomial(n, k)*binomial(3*n-5*k, n-k-1))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(3*n-5*k,n-k-1) for n > 0.
Previous Showing 11-17 of 17 results.