cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A351201 Numbers whose multiset of prime factors has a permutation without all distinct runs.

Original entry on oeis.org

12, 18, 20, 28, 36, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204, 207, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence.
The terms and their prime indices begin:
     12: (2,1,1)         76: (8,1,1)        132: (5,2,1,1)
     18: (2,2,1)         80: (3,1,1,1,1)    140: (4,3,1,1)
     20: (3,1,1)         84: (4,2,1,1)      144: (2,2,1,1,1,1)
     28: (4,1,1)         90: (3,2,2,1)      147: (4,4,2)
     36: (2,2,1,1)       92: (9,1,1)        148: (12,1,1)
     44: (5,1,1)         98: (4,4,1)        150: (3,3,2,1)
     45: (3,2,2)         99: (5,2,2)        153: (7,2,2)
     48: (2,1,1,1,1)    100: (3,3,1,1)      156: (6,2,1,1)
     50: (3,3,1)        108: (2,2,2,1,1)    162: (2,2,2,2,1)
     52: (6,1,1)        112: (4,1,1,1,1)    164: (13,1,1)
     60: (3,2,1,1)      116: (10,1,1)       168: (4,2,1,1,1)
     63: (4,2,2)        117: (6,2,2)        171: (8,2,2)
     68: (7,1,1)        120: (3,2,1,1,1)    172: (14,1,1)
     72: (2,2,1,1,1)    124: (11,1,1)       175: (4,3,3)
     75: (3,3,2)        126: (4,2,2,1)      176: (5,1,1,1,1)
		

Crossrefs

The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
These rank the partitions counted by A351203, complement A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A333489 ranks anti-runs, complement A348612.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],!UnsameQ@@Split[#]&]!={}&]

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A384178 Number of strict integer partitions of n with all distinct lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 8, 10, 11, 13, 13, 16, 15, 19, 19, 23, 22, 26, 28, 31, 35, 39, 37, 47, 51, 52, 60, 65, 67, 78, 85, 86, 99, 108, 110, 127, 136, 138, 159, 170, 171, 196, 209, 213, 240, 257, 260, 292, 306, 313, 350, 371, 369, 417, 441
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2025

Keywords

Examples

			The strict partition y = (9,7,6,5,2,1) has maximal runs ((9),(7,6,5),(2,1)), with lengths (1,3,2), so y is counted under a(30).
The a(1) = 1 through a(14) = 8 strict partitions (A-E = 10-14):
  1  2  3   4  5   6    7    8    9    A     B     C     D     E
        21     32  321  43   431  54   532   65    543   76    653
                        421  521  432  541   542   651   643   743
                                  621  721   632   732   652   761
                                       4321  821   921   832   932
                                             5321  6321  A21   B21
                                                         5431  5432
                                                         7321  8321
		

Crossrefs

For subsets instead of strict partitions we have A384175, complement A384176.
For anti-runs instead of runs we have A384880.
This is the strict version of A384884.
For equal instead of distinct lengths we have A384886.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#1==#2+1&]&]],{n,0,30}]

A350952 The smallest number whose binary expansion has exactly n distinct runs.

Original entry on oeis.org

0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2022

Keywords

Comments

Positions of first appearances in A297770 (with offset 0).
The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - Michael S. Branicky, Feb 14 2022

Examples

			The terms and their binary expansions begin:
       0:                   ()
       1:                    1
       2:                   10
      11:                 1011
      38:               100110
     311:            100110111
    2254:         100011001110
   36079:     1000110011101111
  549790: 10000110001110011110
For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The version for run-lengths instead of runs is A165933, for A165413.
Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
  • PARI
    a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<Andrew Howroyd, Feb 15 2022
  • Python
    def a(n): # returns term by construction
        if n == 0: return 0
        q, r = divmod(n, 2)
        if r == 0:
            s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
            assert len(s) == n*(n//2+1)//2
        else:
            s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
            assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
        return int(s, 2)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
    

Extensions

a(9)-a(19) from Michael S. Branicky, Feb 14 2022

A351203 Number of integer partitions of n of whose permutations do not all have distinct runs.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The a(4) = 1 through a(9) = 16 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (2211)   (331)    (422)      (522)
                (21111)  (511)    (611)      (711)
                         (3211)   (3221)     (3321)
                         (22111)  (3311)     (4221)
                         (31111)  (4211)     (4311)
                                  (22211)    (5211)
                                  (32111)    (22221)
                                  (41111)    (32211)
                                  (221111)   (33111)
                                  (2111111)  (42111)
                                             (51111)
                                             (222111)
                                             (321111)
                                             (2211111)
                                             (3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
		

Crossrefs

The version for run-lengths instead of runs is A144300.
The version for normal multisets is A283353.
The Heinz numbers of these partitions are A351201.
The complement is counted by A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions, ranked by A333489.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Permutations[#],_?(!UnsameQ@@Split[#]&)]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    from itertools import permutations, groupby
    from collections import Counter
    def A351203(n):
        c = 0
        for s, p in partitions(n,size=True):
            for q in permutations(Counter(p).elements(),s):
                if max(Counter(tuple(g) for k, g in groupby(q)).values(),default=0) > 1:
                    c += 1
                    break
        return c # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A000041(n) - A351204(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 27 2024

A382773 Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 1, 0, 1, 0, 4, 4, 1, 0, 4, 4, 0, 0, 1, 6, 1, 0, 4, 6, 4, 0, 1, 6, 4, 0, 1, 6, 1, 0, 0, 8, 1, 0, 4, 0, 6, 0, 1, 0, 6, 0, 6, 8, 1, 0, 1, 10, 0, 0, 8, 6, 1, 0, 8, 6, 1, 0, 1, 10, 0, 0, 6, 6, 1, 0, 0, 12, 1, 0, 16
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) partitions for n = 6, 21, 30, 46:
  (1,1,2)  (1,1,1,1,2,2)  (1,1,1,2,2,3)  (1,1,1,1,1,1,1,1,1,2)
  (2,1,1)  (1,1,1,2,2,1)  (1,1,1,3,2,2)  (1,1,1,1,1,1,1,2,1,1)
           (1,2,2,1,1,1)  (2,2,1,1,1,3)  (1,1,1,1,1,1,2,1,1,1)
           (2,2,1,1,1,1)  (2,2,3,1,1,1)  (1,1,1,1,1,2,1,1,1,1)
                          (3,1,1,1,2,2)  (1,1,1,1,2,1,1,1,1,1)
                          (3,2,2,1,1,1)  (1,1,1,2,1,1,1,1,1,1)
                                         (1,1,2,1,1,1,1,1,1,1)
                                         (2,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Positions of 1 are A008578.
For anti-run permutations we have A335125.
For just prime indices we have A382771, firsts A382772, equal A382857.
These permutations for factorials are counted by A382774, equal A335407.
For equal instead of distinct run-lengths we have A382858.
Positions of 0 are A382912, complement A382913.
A044813 lists numbers whose binary expansion has distinct run-lengths, equal A140690.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],UnsameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = A382771(A181821(n)) = A382771(A304660(n)).

A382858 Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all equal.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 6, 4, 0, 1, 6, 1, 0, 1, 24, 1, 12, 1, 2, 1, 0, 1, 36, 4, 0, 36, 0, 1, 10, 1, 120, 0, 0, 1, 84, 1, 0, 0, 24, 1, 3, 1, 0, 38, 0, 1, 240, 6, 18, 0, 0, 1, 246, 0, 6, 0, 0, 1, 96, 1, 0, 30, 720, 1, 0, 1, 0, 0, 14, 1, 660, 1, 0, 74, 0, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(9) = 4 permutations are:
  (1,1,2,2)
  (1,2,1,2)
  (2,1,2,1)
  (2,2,1,1)
		

Crossrefs

The anti-run case is A335125.
These permutations for factorials are counted by A335407, distinct A382774.
For distinct instead of equal run-lengths we have A382773.
For prime indices we have A382857 (firsts A382878), distinct A382771 (firsts A382772).
Positions of 0 are A382914, signature restriction of A382915.
A003963 gives product of prime indices.
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A047966 counts partitions with equal multiplicities, distinct A098859.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A382913 ranks Look-and-Say partitions by signature, complement A382912.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],SameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = A382857(A181821(n)) = A382857(A304660(n)).

A382878 Set of positions of first appearances in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

1, 6, 24, 30, 36, 180, 210, 360, 420, 720, 1080, 1260, 1800, 2160, 2310, 2520, 3600, 4620, 5040, 5400, 6300, 7560, 10800, 12600, 13860, 15120, 21600, 25200, 25920, 27000, 27720, 30030, 32400, 37800, 44100, 45360, 46656, 50400, 54000, 55440, 60060, 60480, 64800
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The permutations for n = 6, 720, 36, 25920, 30:
  (1,2)  (1,2,1,2,1,3,1)  (1,1,2,2)  (1,2,1,2,1,2,1,2,1,3,1)  (1,2,3)
  (2,1)  (1,2,1,3,1,2,1)  (1,2,1,2)  (1,2,1,2,1,2,1,3,1,2,1)  (1,3,2)
         (1,3,1,2,1,2,1)  (2,1,2,1)  (1,2,1,2,1,3,1,2,1,2,1)  (2,1,3)
                          (2,2,1,1)  (1,2,1,3,1,2,1,2,1,2,1)  (2,3,1)
                                     (1,3,1,2,1,2,1,2,1,2,1)  (3,1,2)
                                                              (3,2,1)
The terms together with their prime indices begin:
      1: {}
      6: {1,2}
     24: {1,1,1,2}
     30: {1,2,3}
     36: {1,1,2,2}
    180: {1,1,2,2,3}
    210: {1,2,3,4}
    360: {1,1,1,2,2,3}
    420: {1,1,2,3,4}
    720: {1,1,1,1,2,2,3}
   1080: {1,1,1,2,2,2,3}
   1260: {1,1,2,2,3,4}
   1800: {1,1,1,2,2,3,3}
   2160: {1,1,1,1,2,2,2,3}
   2310: {1,2,3,4,5}
   2520: {1,1,1,2,2,3,4}
   3600: {1,1,1,1,2,2,3,3}
		

Crossrefs

Positions of first appearances in A382857 (zeros A382879), by signature A382858.
For distinct run-lengths we have A382772, firsts of A382771 (by signature A382773).
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    y=Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],SameQ@@Length/@Split[#]&]],{n,0,1000}];
    fip[y_]:=Select[Range[Length[y]],!MemberQ[Take[y,#-1],y[[#]]]&];
    fip[Rest[y]]

A384891 Number of permutations of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 23, 25, 43, 63, 345, 365, 665, 949, 1513, 8175, 9003, 15929, 23399, 36949, 51043, 293715, 314697, 570353, 826817, 1318201, 1810393, 2766099, 14180139, 15600413, 27707879, 40501321, 63981955, 88599903, 134362569, 181491125, 923029217
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,6,7,8,9,3,4,5) has maximal runs ((1,2),(6,7,8,9),(3,4,5)), with lengths (2,4,3), so is counted under a(9).
The a(0) = 1 through a(7) = 25 permutations:
  ()  (1)  (12)  (123)  (1234)  (12345)  (123456)  (1234567)
                 (231)  (2341)  (23451)  (123564)  (1234675)
                 (312)  (4123)  (34512)  (123645)  (1234756)
                                (45123)  (124563)  (1245673)
                                (51234)  (126345)  (1273456)
                                         (145623)  (1456723)
                                         (156234)  (1672345)
                                         (231456)  (2314567)
                                         (234156)  (2345167)
                                         (234561)  (2345671)
                                         (312456)  (3124567)
                                         (345126)  (3456127)
                                         (345612)  (3456712)
                                         (412356)  (4567123)
                                         (451236)  (4567231)
                                         (456231)  (4567312)
                                         (456312)  (5123467)
                                         (561234)  (5612347)
                                         (562341)  (5671234)
                                         (564123)  (6712345)
                                         (612345)  (6723451)
                                         (634512)  (6751234)
                                         (645123)  (7123456)
                                                   (7345612)
                                                   (7561234)
		

Crossrefs

Counting by number of maximal anti-runs gives A010027, for runs A123513.
For subsets instead of permutations we have A384175, complement A384176.
For partitions we have A384884 (anti-runs A384885), strict A384178 (anti-runs A384880).
For equal instead of distinct lengths we have A384892.
For anti-runs instead of runs we have A384907.
A000041 counts integer partitions, strict A000009.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(n+1))/(1-x))+O(x*x^d))); Vec(1+sum(i=1,d,i!*b(i)*polcoef(p,i))) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{k=1..n} ( T(n,k) * A000255(k-1) ) for n>=1, where T(n,k) is the number of compositions of n into k distinct parts (cf. A072574). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A384892 Number of permutations of {1..n} with all equal lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 2, 4, 13, 54, 314, 2120, 16700, 148333, 1468512, 16019532, 190899736, 2467007774, 34361896102, 513137616840, 8178130784179, 138547156531410, 2486151753462260, 47106033220679060, 939765362754015750, 19690321886243848784, 432292066866187743954
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,5,6,3,4,7,8) has maximal runs ((1,2),(5,6),(3,4),(7,8)), with lengths (2,2,2,2), so is counted under a(8).
The a(0) = 1 through a(4) = 13 permutations:
  ()  (1)  (12)  (123)  (1234)
           (21)  (132)  (1324)
                 (213)  (1432)
                 (321)  (2143)
                        (2413)
                        (2431)
                        (3142)
                        (3214)
                        (3241)
                        (3412)
                        (4132)
                        (4213)
                        (4321)
		

Crossrefs

For subsets instead of permutations we have A243815, for anti-runs A384889.
For strict partitions and distinct lengths we have A384178, anti-runs A384880.
For integer partitions and distinct lengths we have A384884, anti-runs A384885.
For distinct lengths we have A384891, for anti-runs A384907.
For partitions we have A384904, strict A384886.
A010027 counts permutations by maximal anti-runs, for runs A123513.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    a(n)=if(n,sumdiv(n,d,sum(i=0,d-1,(-1)^i*(d-i)!*binomial(d-1,i))),1) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{d|n} A000255(d-1). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025
Previous Showing 21-30 of 38 results. Next