cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A369666 Numbers k > 1 for which A276085(A003415(k)) == k (mod 4), where A003415 is the arithmetic derivative, and A276085 is the primorial base log-function.

Original entry on oeis.org

6, 8, 10, 12, 15, 22, 24, 30, 34, 40, 42, 50, 56, 58, 60, 64, 65, 66, 70, 77, 78, 82, 84, 86, 104, 112, 114, 118, 120, 122, 126, 128, 130, 132, 136, 140, 141, 142, 146, 152, 154, 161, 168, 174, 180, 182, 184, 185, 188, 189, 194, 196, 201, 202, 204, 206, 209, 214, 220, 221, 222, 228, 230, 232, 236, 238, 242, 246, 250
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2024

Keywords

Crossrefs

Cf. A003415, A276085, A369665 (characteristic function).
Cf. A369663 and A369664 (subsequences).
Cf. also A351228.

Programs

A370127 Numbers k such that (A276086(k)/s)^s < k^(s-1), where A276086 is the primorial base exp-function, and s = bigomega(k).

Original entry on oeis.org

30, 32, 36, 60, 210, 212, 216, 240, 420, 2310, 2312, 2313, 2314, 2316, 2318, 2320, 2322, 2324, 2328, 2340, 2344, 2346, 2352, 2370, 2376, 2400, 2520, 2522, 2528, 2550, 2730, 4620, 4624, 4626, 4632, 4650, 4656, 4680, 4830, 4832, 4860, 6930, 30030, 30031, 30032, 30033, 30034, 30035, 30036, 30037, 30038, 30039, 30040
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2024

Keywords

Comments

Numbers k such that A276086(k) < s * k^((s-1)/s), with s = A001222(k).
For these numbers it must hold that A276086(k) < A003415(k) because (A003415(k)/s)^s >= k^(s-1) [with s = A001222(k)] holds for all k >= 2. See Ufnarovski and Ã…hlander, Theorem 9, point (4). In other words, this is a subsequence of A351228 \ {6}.

Crossrefs

Setwise difference A351228 \ A370128.
Cf. A066576 (subsequence).

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA370127(n) = { my(x=A276086(n), s=bigomega(n)); ((x/s)^s < n^(s-1)); };

A351229 Numbers k for which A003415(k) >= A276086(k) > k, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.

Original entry on oeis.org

2349, 2376, 2400, 2552, 4656, 4680, 4832, 4860, 6936, 6960, 30056, 30080, 30100, 30150, 30256, 30282, 32382, 32384, 32562, 36960, 60080, 510568, 510592, 510996, 511020, 511152, 511176, 511200, 512940, 513096, 513120, 513252, 513272, 515172, 515196, 515352, 515376, 515552, 517448, 517472, 519750, 540636, 540660, 540792
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2022

Keywords

Comments

The terms appear to come in batches dictated by their primorial base expansion (A049345), these terms having only low digit values in that base.

Crossrefs

Intersection of A351227 and A351228.
Positions of ones in A351089.

Programs

  • Mathematica
    Select[Range[550000], Block[{i, m, n = #, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] >= m > #] &] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA351229(n) = { my(u=A276086(n)); ((u > n) && (A003415(n) >= u)); };

A369958 Numbers k such that A003415(k)/gcd(k, A003415(k)) >= A276086(k)/gcd(k, A276086(k)), where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.

Original entry on oeis.org

6, 30, 33, 42, 63, 210, 212, 213, 214, 220, 420, 429, 462, 2310, 2312, 2313, 2314, 2315, 2316, 2317, 2318, 2319, 2320, 2325, 2330, 2340, 2342, 2343, 2344, 2345, 2346, 2355, 2370, 2373, 2379, 2380, 2520, 2522, 2526, 2530, 2535, 2552, 2730, 3003, 4620, 4622, 4623, 4626, 4628, 4630, 4654, 4680, 4830, 4836, 4862, 6930, 6942, 7150
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2024

Keywords

Crossrefs

Subsequences: A002110 (after its two initial terms), A369959, A369960.
Cf. also A351228.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA369958(n) = ((A003415(n)/gcd(n, A003415(n))) >= (A276086(n)/gcd(n, A276086(n))));

Formula

{k | A083345(k) >= A351251(k)}.

A370128 Numbers k such that (A276086(k)/s)^s >= k^(s-1) and A276086(k) <= A003415(k), where A003415 is the arithmetic derivative, A276086 is the primorial base exp-function, and s = bigomega(k).

Original entry on oeis.org

6, 213, 214, 2315, 2317, 2319, 2342, 2343, 2348, 2349, 2372, 2523, 2524, 2526, 2552, 4622, 4623, 4628, 4652, 6932, 6936, 6960, 30041, 30043, 30046, 30052, 30054, 30062, 30074, 30075, 30076, 30093, 30094, 30098, 30100, 30102, 30150, 30242, 30245, 30249, 30254, 30256, 30258, 30273, 30274, 30282, 32343, 32345, 32347
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2024

Keywords

Comments

Numbers k such that A003415(k) >= A276086(k) >= s * k^((s-1)/s), with s = A001222(k).
See comments in A370127.

Crossrefs

Setwise difference A351228 \ A370127.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA370128(n) = { my(x=A276086(n), s=bigomega(n)); ((x<=A003415(n)) && ((x/s)^s >= n^(s-1))); };

A373603 The second smallest k such that A003415(k) == A276086(k) mod A002110(n), or -1 if no such k exists, where A003415 is the arithmetic derivative, A276086 is the primorial base exp-function, and A002110 gives the n-th primorial.

Original entry on oeis.org

2, 9, 26, 122, 1382, 21446, 204566, 9699686, 90387605
Offset: 1

Views

Author

Antti Karttunen, Jun 22 2024

Keywords

Comments

For n > 1, the index of the next term in A373849, after its sixth term 0, that is a multiple of A002110(n), as for n >= 1, the smallest k such that A003415(k) == A276086(k) mod A002110(n) gives the sequence 1, 6, 6, 6, 6, 6, 6, 6, ..., because A003415(6) = A276086(6).
Provided that such k exists for every n (and the escape clause is not needed), then the sequence is by necessity monotonic. If it is strictly monotonic, then it implies that k=6 is the only k such that A003415(k) = A276086(k). See also comments in A351228.
Note that if we instead search for the smallest k such that A276086(k) is a multiple of A002110(n) we obtain A143293, partial sums of the primorial numbers. See also A368703.

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A373603(n) = { my(m=A002110(n), c=2); for(i=1,oo,if(0==((A276086(i)-A003415(i))%m), c--; if(0==c, return(i)))); };

A373849 Difference between the primorial base exp-function and the arithmetic derivative.

Original entry on oeis.org

1, 2, 2, 5, 5, 17, 0, 9, 3, 24, 38, 89, 9, 49, 66, 142, 193, 449, 104, 249, 351, 740, 1112, 2249, 581, 1240, 1860, 3723, 5593, 11249, -24, 13, -59, 28, 44, 114, -25, 69, 84, 194, 247, 629, 134, 349, 477, 1011, 1550, 3149, 763, 1736, 2580, 5230, 7819, 15749, 4294, 8734, 13033, 26228, 39344, 78749, -43, 97, 114, 243
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2024

Keywords

Crossrefs

Cf. A003415, A276086, A327858 [= gcd(a(n), A003415(n))], A351228 (indices of nonpositive terms).
Cf. A359821 (positions of even terms), A359822 (of odd terms).

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A373849(n) = (A276086(n)-A003415(n));

Formula

a(n) = A276086(n) - A003415(n).

A369656 Numbers k such that k' is odd and also k'' is odd, where k' stands for the arithmetic derivative of k, A003415(k).

Original entry on oeis.org

6, 10, 22, 27, 30, 34, 42, 50, 58, 66, 70, 78, 82, 86, 99, 105, 114, 118, 122, 125, 126, 130, 142, 146, 154, 165, 174, 182, 194, 202, 206, 207, 214, 222, 230, 231, 238, 242, 243, 246, 250, 255, 273, 274, 279, 282, 285, 286, 298, 302, 310, 318, 326, 333, 343, 345, 346, 357, 358, 366, 369, 370, 374, 382, 385, 386
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2024

Keywords

Comments

Numbers k that are in A235991 and also A003415(k) is in A235991.

Crossrefs

Cf. A000035, A003415, A068346, A235991, A351228, A369655 (characteristic function).

Programs

A371104 Starting from k=7, each subsequent term is the next larger k such that the ratio A276086(k)/A003415(k) is nearer to 1 than for the previous k in the sequence.

Original entry on oeis.org

7, 8, 213, 214, 2325, 2532, 4625, 30282, 32358, 32384, 60098, 570816, 572884, 575190, 9732128, 243513275
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2024

Keywords

Comments

Note that A276086(6) / A003415(6) = 5/5 = 1. If there are any x > 6, for which the ratio is 1, then the least one of them will terminate this sequence. Question: Could this sequence actually be infinite?
If it exists, a(17) > 1207959552.

Examples

			          k   A049345(k)    A276086(k)/A003415(k)  A276086(k)-A003415(k)
  ----------------------------------------------------------------------
          7,        101,       10/1        = 10,                9
          8,        110,       15/12       = 1.25,              3
        213,      10011,       66/74       = 0.89189189,       -8
        214,      10020,       99/109      = 0.90825688,      -10
       2325,     100211,     1950/1780     = 1.0955056,       170
       2532,     110200,     3575/3388     = 1.0551948,       187
       4625,     200021,     3042/2900     = 1.0489655,       142
      30282,    1011200,    32725/34181    = 0.95740324,    -1456
      32358,    1100300,    27625/26971    = 1.0242483,       654
      32384,    1101210,   116025/117696   = 0.98580241,    -1671
      60098,    2001110,    30345/30749    = 0.98686136,     -404
     570816,   12011100,  2114035/2093568  = 1.0097761,     20467
     572884,   12100020,   642447/643056   = 0.99905296,     -609
     575190,   12200000,   927979/927483   = 1.0005348,       496
    9732128,  101103110, 26152035/26148912 = 1.0001194,      3123
  243513275, 1220000021, 99685818/99683810 = 1.0000201,      2008.
		

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    print1(7, ", "); r = A276086(7)/A003415(7); for(n=7, oo, t=A276086(n)/A003415(n); if(abs(1-t) < abs(1-r), r=t; print1(n, ", ")))
Previous Showing 11-19 of 19 results.