A381282
Expansion of e.g.f. 1/(1 - x * cos(2*x)).
Original entry on oeis.org
1, 1, 2, -6, -72, -520, -1200, 24752, 516992, 5106816, 5287680, -998945024, -23719719936, -272471972864, 1326261594112, 149170761246720, 3843177252618240, 42752553478356992, -863092250325614592, -59317347865870139392, -1577115871098630307840, -13173264127625587851264
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*(2*I)^(n-k)*a185951(n, k));
A385283
Expansion of e.g.f. 1/(1 - 2 * x * cos(2*x))^(1/2).
Original entry on oeis.org
1, 1, 3, 3, -39, -775, -9045, -85813, -426447, 7321329, 325555155, 7786757011, 137053423881, 1388713844713, -21121997539461, -1827406866674085, -69034283067822495, -1852635543265039903, -30574875232261547613, 308376017794648053539, 54871741689019890859065
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k)*(2*I)^(n-k)*a185951(n, k));
A352250
Expansion of e.g.f. 1 / (1 - x * sin(x)) (even powers only).
Original entry on oeis.org
1, 2, 20, 486, 21944, 1591210, 169207092, 24808395262, 4796420822384, 1182349445882706, 361939981107422060, 134705596642758848806, 59900689507397744253096, 31365504832631796986962426, 19102102945852191813235300004, 13387748268024668296590660222030
Offset: 0
-
nmax = 30; Take[CoefficientList[Series[1/(1 - x Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = 2 Sum[(-1)^(k + 1) Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
-
my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sin(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
A381344
Expansion of e.g.f. 1/( 1 - x * cosh(sqrt(2)*x) ).
Original entry on oeis.org
1, 1, 2, 12, 72, 500, 4560, 47936, 565376, 7572240, 112838400, 1844425792, 32910332928, 636463467328, 13251265570816, 295598326909440, 7034150340034560, 177843592245969152, 4760839037033054208, 134528586280018721792, 4001489050575059025920, 124973219149863342633984
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*2^((n-k)/2)*a185951(n, k));
A385284
Expansion of e.g.f. 1/(1 - 3 * x * cos(3*x))^(1/3).
Original entry on oeis.org
1, 1, 4, 1, -152, -3515, -54080, -671363, -2823296, 199955305, 10101514240, 323321153881, 7583054076928, 80180394219757, -4570380001660928, -409907196093564395, -20705306119297925120, -748794938843475359663, -14289862480447260852224, 610587389113316064978481
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a007559(n) = prod(k=0, n-1, 3*k+1);
a(n) = sum(k=0, n, a007559(k)*(3*I)^(n-k)*a185951(n, k));
A381208
Expansion of e.g.f. 1/(1 - x*cos(x))^2.
Original entry on oeis.org
1, 2, 6, 18, 48, 10, -1440, -17654, -153216, -1003950, -2787840, 58057538, 1483941888, 22381115354, 245730121728, 1455189928890, -18135147970560, -856283065534046, -19218870434267136, -306007541260257422, -2933654664287354880, 20552099782407258282, 1938717354581701951488
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, (k+1)!*I^(n-k)*a185951(n, k));
A381345
Expansion of e.g.f. 1/( 1 - x * cos(sqrt(2)*x) ).
Original entry on oeis.org
1, 1, 2, 0, -24, -220, -1200, -2576, 52864, 1016208, 10909440, 57039488, -687971328, -26190716864, -450123634688, -4238375059200, 24514848522240, 2156422420074752, 54984136073084928, 799573460292407296, 42320889956270080, -425007017470737816576, -15563879892284330213376
Offset: 0
-
a185951(n, k) = binomial(n, k)/2^k*sum(j=0, k, (2*j-k)^(n-k)*binomial(k, j));
a(n) = sum(k=0, n, k!*(-2)^((n-k)/2)*a185951(n, k));
Comments