cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A365659 Number of strict integer partitions of n that either have (1) length 2, or (2) greatest part n/2.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 3, 4, 4, 6, 5, 8, 6, 10, 7, 12, 8, 15, 9, 18, 10, 21, 11, 25, 12, 29, 13, 34, 14, 40, 15, 46, 16, 53, 17, 62, 18, 71, 19, 82, 20, 95, 21, 109, 22, 125, 23, 144, 24, 165, 25, 189, 26, 217, 27, 248, 28, 283, 29, 324
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Also the number of strict integer partitions of n containing two possibly equal elements summing to n.

Examples

			The a(3) = 1 through a(11) = 5 partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)    (5,4)  (6,4)    (6,5)
                (4,1)  (5,1)    (5,2)  (6,2)    (6,3)  (7,3)    (7,4)
                       (3,2,1)  (6,1)  (7,1)    (7,2)  (8,2)    (8,3)
                                       (4,3,1)  (8,1)  (9,1)    (9,2)
                                                       (5,3,2)  (10,1)
                                                       (5,4,1)
		

Crossrefs

Without repeated parts we have A140106.
The non-strict version is A238628.
For subsets instead of strict partitions we have A365544.
A000009 counts subsets summing to n.
A365046 counts combination-full subsets, differences of A364914.
A365543 counts partitions of n with a submultiset summing to k.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(Length[#]==2||Max@@#==n/2)&]], {n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365659(n): return n>>1 if n&1 or n==0 else (m:=n>>1)+sum(1 for p in partitions(m) if max(p.values(),default=1)==1)-2 # Chai Wah Wu, Sep 18 2023

Formula

a(n) = (n-1)/2 if n is odd. a(n) = n/2 + A000009(n/2) - 2 if n is even and n > 0. - Chai Wah Wu, Sep 18 2023

A365825 Number of integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of integer partitions of n with no two possibly equal parts summing to n.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (111)  (1111)  (221)    (222)     (322)      (332)
                           (311)    (411)     (331)      (521)
                           (2111)   (2211)    (421)      (611)
                           (11111)  (21111)   (511)      (2222)
                                    (111111)  (2221)     (3221)
                                              (3211)     (3311)
                                              (4111)     (5111)
                                              (22111)    (22211)
                                              (31111)    (32111)
                                              (211111)   (221111)
                                              (1111111)  (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

First condition alone is A058984, complement A004526, ranks A100959.
Second condition alone is A086543, complement A035363, ranks !A344415.
The complement is counted by A238628.
The strict case is A365826, complement A365659.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
  • Python
    from sympy import npartitions
    def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023

Formula

Heinz numbers are A100959 /\ !A344415.
a(n) = A000041(n)-(n-1)/2 if n is odd. a(n) = A000041(n)-n/2-A000041(n/2)+1 if n is even. - Chai Wah Wu, Sep 23 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 23 2023

A366131 Number of subsets of {1..n} with two elements (possibly the same) summing to n.

Original entry on oeis.org

0, 0, 2, 2, 10, 14, 46, 74, 202, 350, 862, 1562, 3610, 6734, 14926, 28394, 61162, 117950, 249022, 484922, 1009210, 1979054, 4076206, 8034314, 16422922, 32491550, 66045982, 131029082, 265246810, 527304974, 1064175886, 2118785834, 4266269482, 8503841150, 17093775742, 34101458042, 68461196410, 136664112494
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2023

Keywords

Examples

			The a(0) = 0 through a(5) = 14 subsets:
  .  .  {1}    {1,2}    {2}        {1,4}
        {1,2}  {1,2,3}  {1,2}      {2,3}
                        {1,3}      {1,2,3}
                        {2,3}      {1,2,4}
                        {2,4}      {1,3,4}
                        {1,2,3}    {1,4,5}
                        {1,2,4}    {2,3,4}
                        {1,3,4}    {2,3,5}
                        {2,3,4}    {1,2,3,4}
                        {1,2,3,4}  {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement is counted by A117855.
For pairs summing to n + 1 we have A167936.
A068911 counts subsets of {1..n} w/o two distinct elements summing to n.
A093971/A088809/A364534 count certain types of sum-full subsets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Tuples[#,2],n]&]],{n,0,10}]
  • Python
    def A366131(n): return (1<>1)<<1) if n else 0 # Chai Wah Wu, Nov 14 2023

Formula

From Chai Wah Wu, Nov 14 2023: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) for n > 3.
G.f.: 2*x^2*(1 - x)/((2*x - 1)*(3*x^2 - 1)). (End)

A366130 Number of subsets of {1..n} with a subset summing to n + 1.

Original entry on oeis.org

0, 0, 1, 2, 7, 15, 38, 79, 184, 378, 823, 1682, 3552, 7208, 14948, 30154, 61698, 124302, 252125, 506521, 1022768, 2051555, 4127633, 8272147, 16607469, 33258510, 66680774, 133467385, 267349211, 535007304, 1071020315, 2142778192, 4288207796
Offset: 0

Views

Author

Gus Wiseman, Oct 07 2023

Keywords

Examples

			The subset S = {1,2,4} has subset {1,4} with sum 4+1 and {2,4} with sum 5+1 and {1,2,4} with sum 6+1, so S is counted under a(4), a(5), and a(6).
The a(0) = 0 through a(5) = 15 subsets:
  .  .  {1,2}  {1,3}    {1,4}      {1,5}
               {1,2,3}  {2,3}      {2,4}
                        {1,2,3}    {1,2,3}
                        {1,2,4}    {1,2,4}
                        {1,3,4}    {1,2,5}
                        {2,3,4}    {1,3,5}
                        {1,2,3,4}  {1,4,5}
                                   {2,3,4}
                                   {2,4,5}
                                   {1,2,3,4}
                                   {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

For pairs summing to n + 1 we have A167762, complement A038754.
For n instead of n + 1 we have A365376, for pairs summing to n A365544.
The complement is counted by A365377 shifted.
The complement for pairs summing to n is counted by A365377.
A068911 counts subsets of {1..n} w/o two distinct elements summing to n.
A093971/A088809/A364534 count certain types of sum-full subsets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n+1]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A366130(n):
        a = tuple(set(p.keys()) for p in partitions(n+1,k=n) if max(p.values(),default=0)==1)
        return sum(1 for k in range(2,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any(s<=w for s in a)) # Chai Wah Wu, Nov 24 2023

Formula

Diagonal k = n + 1 of A365381.

Extensions

a(20)-a(32) from Chai Wah Wu, Nov 24 2023

A365660 Number of integer partitions of 2n with exactly n distinct sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 3, 2, 6, 6, 16, 12, 20, 26, 59, 45, 79, 94, 186, 142, 231, 244, 442, 470, 616, 746, 1340, 1053, 1548, 1852, 2780, 2826, 3874, 4320, 6617, 6286, 7924, 9178, 13180, 13634, 17494, 20356, 28220, 29176, 37188, 41932, 56037
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Are n = 1, 2, 4 the only n such that none of these partitions has 1?
Are n = 2, 4, 5, 8, 9 the only n such that none of these partitions is strict?

Examples

			The partition (433) has sums 3, 4, 6, 7, 10 so is counted under a(5).
The a(1) = 1 through a(7) = 16 partitions:
(2)  (2,2)  (4,2)    (4,2,2)    (4,3,3)      (6,4,2)        (6,5,3)
            (5,1)    (2,2,2,2)  (4,4,2)      (6,5,1)        (8,4,2)
            (2,2,2)             (6,2,2)      (4,4,2,2)      (8,5,1)
                                (8,1,1)      (6,2,2,2)      (9,3,2)
                                (4,2,2,2)    (4,2,2,2,2)    (9,4,1)
                                (2,2,2,2,2)  (2,2,2,2,2,2)  (10,3,1)
                                                            (11,2,1)
                                                            (4,4,4,2)
                                                            (5,3,3,3)
                                                            (6,4,2,2)
                                                            (8,2,2,2)
                                                            (11,1,1,1)
                                                            (4,4,2,2,2)
                                                            (6,2,2,2,2)
                                                            (4,2,2,2,2,2)
                                                            (2,2,2,2,2,2,2)
		

Crossrefs

For n instead of 2n we have A126796.
Central column n = 2k of A365658.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002219 counts partitions of 2n with a submultiset summing to n.
A046663 counts partitions of n w/o a submultiset of sum k, strict A365663.
A122768 counts distinct nonempty submultisets of partitions.
A299701 counts sums of submultisets of prime indices, of partitions A304792.
A364272 counts sum-full strict partitions, sum-free A364349.
A365543 counts partitions of n w/ a submultiset of sum k, strict A365661.

Programs

  • Mathematica
    msubs[y_]:=primeMS/@Divisors[Times@@Prime/@y];
    Table[Length[Select[IntegerPartitions[2n], Length[Union[Total/@Rest[msubs[#]]]]==n&]],{n,0,10}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A365660(n):
        c = 0
        for p in partitions(n<<1):
            q, s = list(Counter(p).elements()), set()
            for l in range(1,len(q)+1):
                for k in multiset_combinations(q,l):
                    s.add(sum(k))
                    if len(s) > n:
                        break
                else:
                    continue
                break
            if len(s)==n:
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(21)-a(38) from Chai Wah Wu, Sep 20 2023
a(39)-a(43) from Chai Wah Wu, Sep 21 2023

A365826 Number of strict integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n without two parts (allowing parts to be re-used) summing to n.

Examples

			The a(6) = 1 through a(12) = 7 strict partitions:
  (6)  (7)      (8)      (9)      (10)       (11)       (12)
       (4,2,1)  (5,2,1)  (4,3,2)  (6,3,1)    (5,4,2)    (5,4,3)
                         (5,3,1)  (7,2,1)    (6,3,2)    (7,3,2)
                         (6,2,1)  (4,3,2,1)  (6,4,1)    (7,4,1)
                                             (7,3,1)    (8,3,1)
                                             (8,2,1)    (9,2,1)
                                             (5,3,2,1)  (5,4,2,1)
		

Crossrefs

The second condition alone has bisections A078408 and A365828.
The complement is counted by A365659.
The non-strict version is A365825, complement A238628.
The first condition alone is A365827, complement A140106.
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
Previous Showing 11-16 of 16 results.