cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A366651 Number of distinct prime divisors of 8^n - 1.

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 3, 6, 3, 6, 4, 8, 4, 6, 6, 9, 5, 6, 4, 11, 6, 8, 4, 12, 7, 7, 6, 12, 6, 11, 3, 12, 8, 10, 10, 12, 6, 8, 9, 15, 5, 11, 5, 14, 10, 8, 6, 17, 5, 13, 8, 16, 8, 12, 10, 17, 7, 10, 6, 21, 5, 7, 9, 15, 8, 15, 6, 19, 9, 20, 7, 18, 7, 12, 14, 16, 9
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(8^n - 1), ", "))

Formula

a(n) = omega(8^n-1) = A001221(A024088(n)).
a(n) = A046800(3*n). - Max Alekseyev, Jan 09 2024

A366652 Number of divisors of 8^n-1.

Original entry on oeis.org

2, 6, 4, 24, 8, 32, 12, 96, 8, 96, 16, 512, 16, 144, 64, 768, 32, 160, 16, 4608, 96, 384, 16, 8192, 128, 192, 64, 9216, 64, 4096, 8, 6144, 256, 1536, 1536, 10240, 64, 384, 512, 73728, 32, 6144, 32, 24576, 1024, 384, 64, 262144, 64, 12288, 256, 147456, 256
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=8 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 8^Range[100]-1]
  • PARI
    a(n) = numdiv(8^n-1);

Formula

a(n) = sigma0(8^n-1) = A000005(A024088(n)).
a(n) = A046801(3*n). - Max Alekseyev, Jan 09 2024

A366658 a(n) = phi(8^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 48, 324, 3840, 19800, 186624, 1365336, 16515072, 84768120, 760320000, 5632621632, 64258375680, 366369658200, 3105655160832, 20140520400000, 280012271910912, 1495522910085120, 12824556668190720, 95907982079387520, 1080582572777472000, 5688765822212629632
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[8^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(8^n+1)}
    
  • Python
    from sympy import totient
    def A366658(n): return totient((1<<3*n)+1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A000010(A062395(n)). - Paul F. Marrero Romero, Nov 06 2023
a(n) = A053285(3*n). - Max Alekseyev, Jan 09 2024
Previous Showing 11-13 of 13 results.