cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A366654 a(n) = phi(8^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 36, 432, 1728, 27000, 139968, 1778112, 6635520, 113467392, 534600000, 6963536448, 26121388032, 465193834560, 2427720325632, 28548223200000, 109586090557440, 1910296842179040, 9618417501143040, 123523151337020736, 406467072000000000, 7713001620195508224
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), this sequence (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[8^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(8^n-1)}
    
  • Python
    from sympy import totient
    def A366654(n): return totient((1<<3*n)-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A053287(3*n). - Max Alekseyev, Jan 09 2024

A366653 Sum of the divisors of 8^n-1.

Original entry on oeis.org

8, 104, 592, 8736, 38912, 473600, 2466048, 38054016, 155493536, 2015330304, 10359014400, 166290432000, 636328345600, 7645340651520, 42424026529792, 648494317126656, 2599936977797120, 32817383473149440, 164708609085669376, 3010983668199456768
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=38912 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 8^Range[30]-1]
  • SageMath
    [sigma(8**n-1, 1) for n in range(1, 21)] # Stefano Spezia, Aug 02 2025

Formula

a(n) = sigma(8^n-1) = A000203(A024088(n)).
a(n) = A075708(3*n). - Max Alekseyev, Jan 09 2024

A366620 Number of distinct prime divisors of 6^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 4, 5, 3, 7, 3, 5, 5, 6, 5, 7, 3, 8, 4, 5, 5, 9, 4, 7, 6, 8, 2, 10, 3, 9, 6, 8, 6, 13, 6, 6, 6, 11, 3, 9, 5, 9, 10, 8, 4, 13, 5, 8, 9, 11, 4, 11, 6, 13, 7, 6, 4, 19, 4, 5, 10, 12, 8, 12, 3, 11, 8, 16, 2, 18, 5, 10, 10, 9, 6, 15, 4, 16, 8
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(6^n - 1), ", "))

Formula

a(n) = omega(6^n-1) = A001221(A024062(n)).

A366632 Number of distinct prime divisors of 7^n - 1.

Original entry on oeis.org

2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 4, 7, 3, 6, 6, 6, 4, 7, 4, 8, 6, 6, 5, 11, 5, 5, 9, 8, 5, 10, 5, 8, 8, 5, 7, 11, 5, 6, 7, 11, 5, 11, 4, 10, 10, 6, 4, 14, 8, 8, 9, 8, 5, 12, 6, 13, 8, 6, 6, 17, 6, 8, 9, 11, 9, 13, 6, 9, 9, 15, 4, 18, 7, 7, 10, 8, 9, 13, 4, 16, 13
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(7^n - 1), ", "))

Formula

a(n) = omega(7^n-1) = A001221(A024075(n)).

A366660 Number of distinct prime divisors of 9^n - 1.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 5, 6, 5, 5, 7, 3, 6, 8, 6, 6, 9, 5, 7, 8, 8, 4, 12, 7, 6, 11, 9, 7, 12, 6, 7, 10, 9, 8, 12, 6, 8, 12, 11, 6, 14, 4, 12, 16, 7, 8, 15, 10, 12, 13, 9, 6, 15, 11, 14, 13, 10, 5, 18, 5, 10, 16, 8, 9, 15, 6, 13, 13, 15, 7, 19, 7, 10, 19, 13, 11
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(9^n - 1), ", "))

Formula

a(n) = omega(9^n-1) = A001221(A024101(n)).
a(n) = A133801(2*n) = A133801(n) + A366580(n) - 1. - Max Alekseyev, Jan 07 2024

A366604 Number of distinct prime divisors of 4^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 3, 6, 6, 5, 3, 8, 3, 7, 6, 7, 4, 9, 7, 7, 6, 8, 6, 11, 3, 7, 8, 7, 9, 12, 5, 7, 7, 9, 5, 12, 5, 10, 11, 9, 6, 12, 5, 12, 10, 10, 6, 12, 11, 11, 8, 9, 6, 15, 3, 8, 11, 9, 9, 14, 5, 10, 8, 15, 6, 17, 6, 10, 13, 11, 10, 16, 5
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    for(n = 1, 100, print1(omega(4^n - 1), ", "))
    
  • Python
    from sympy import primenu
    def A366604(n): return primenu((1<<(n<<1))-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = omega(4^n-1) = A001221(A024036(n)).
a(n) = A046800(2*n) = A046799(n) + A046800(n). - Max Alekseyev, Jan 07 2024

A366652 Number of divisors of 8^n-1.

Original entry on oeis.org

2, 6, 4, 24, 8, 32, 12, 96, 8, 96, 16, 512, 16, 144, 64, 768, 32, 160, 16, 4608, 96, 384, 16, 8192, 128, 192, 64, 9216, 64, 4096, 8, 6144, 256, 1536, 1536, 10240, 64, 384, 512, 73728, 32, 6144, 32, 24576, 1024, 384, 64, 262144, 64, 12288, 256, 147456, 256
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(5)=8 because 8^5-1 has divisors {1, 7, 31, 151, 217, 1057, 4681, 32767}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 8^Range[100]-1]
  • PARI
    a(n) = numdiv(8^n-1);

Formula

a(n) = sigma0(8^n-1) = A000005(A024088(n)).
a(n) = A046801(3*n). - Max Alekseyev, Jan 09 2024

A366655 Number of distinct prime divisors of 8^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 5, 4, 4, 3, 6, 5, 3, 5, 6, 4, 4, 5, 6, 4, 5, 6, 9, 6, 5, 4, 10, 4, 3, 7, 9, 10, 6, 6, 8, 5, 6, 6, 10, 5, 7, 9, 8, 6, 7, 6, 12, 9, 5, 5, 10, 10, 8, 6, 8, 7, 8, 3, 9, 10, 4, 10, 12, 7, 8, 6, 14, 7, 8, 5, 10, 10, 8, 11, 16, 5, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(8^n + 1), ", "))

Formula

a(n) = omega(8^n+1) = A001221(A062395(n)).
a(n) = A046799(3*n). - Max Alekseyev, Jan 09 2024

A366611 Number of distinct prime divisors of 5^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 4, 4, 5, 2, 6, 2, 5, 6, 6, 3, 7, 4, 8, 5, 6, 3, 8, 7, 5, 8, 7, 4, 11, 3, 8, 5, 6, 8, 11, 4, 8, 5, 11, 3, 12, 3, 9, 11, 6, 2, 11, 3, 11, 7, 8, 4, 14, 8, 9, 6, 7, 3, 17, 4, 7, 10, 11, 7, 12, 6, 11, 8, 14, 3, 16, 4, 8, 15, 11, 6, 11, 4, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(5^n - 1), ", "))

Formula

a(n) = omega(5^n-1) = A001221(A024049(n)).
Showing 1-9 of 9 results.