A378112
Number A(n,k) of k-tuples (p_1, p_2, ..., p_k) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_k only touches the x-axis at its endpoints; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 3, 9, 5, 0, 1, 1, 4, 23, 55, 14, 0, 1, 1, 5, 46, 265, 400, 42, 0, 1, 1, 6, 80, 880, 3942, 3266, 132, 0, 1, 1, 7, 127, 2347, 23695, 70395, 28999, 429, 0, 1, 1, 8, 189, 5403, 105554, 824229, 1445700, 274537, 1430, 0
Offset: 0
A(3,2) = 9:
/\
/\/\ / \ /\ /\/\
(/\/\/\,/ \) (/\/\/\,/ \) (/ \/\,/ \)
.
/\ /\
/\ / \ /\ /\/\ /\ / \
(/ \/\,/ \) (/\/ \,/ \) (/\/ \,/ \)
.
/\ /\ /\
/\/\ /\/\ /\/\ / \ / \ / \
(/ \,/ \) (/ \,/ \) (/ \,/ \)
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 9, 23, 46, 80, 127, ...
0, 5, 55, 265, 880, 2347, 5403, ...
0, 14, 400, 3942, 23695, 105554, 382508, ...
0, 42, 3266, 70395, 824229, 6601728, 40446551, ...
-
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
(2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
end:
A:= proc(n, k) option remember;
b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
A355503
Total number of m-tuples (p_1, p_2, ..., p_m) of Dyck paths of semilength n-m, such that each p_i is never below p_{i-1} for m=0..n.
Original entry on oeis.org
1, 2, 3, 5, 11, 35, 164, 1120, 10969, 152849, 3029650, 85227078, 3400752392, 192644205130, 15470939367651, 1761760468965521, 284641456742538865, 65175288287611738435, 21159611204475209730138, 9743708333490185603430830, 6357930817596444858142966826
Offset: 0
a(3) = 5: ( ), (/\/\), (//\\), (/\, /\, /\), (<>, <>, <>, <>).
-
a:= n-> add(mul(mul((i+j+2*(n-m))/(i+j), j=i..m-1), i=1..m-1), m=0..n):
seq(a(n), n=0..23);
-
Table[Sum[Product[Product[(i+j+2*(n-m))/(i+j), {j,i,m-1}], {i,1,m-1}], {m,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
Table[Sum[BarnesG[1 + m] * Sqrt[BarnesG[1 + 2*n] * BarnesG[2 - 2*m + 2*n] * Gamma[1 + 2*m] * Gamma[1 + n] / (BarnesG[1 + 2*m] * Gamma[1 + m] * Gamma[1 + 2*n] * Gamma[1 - m + n])] / BarnesG[1 - m + 2*n], {m, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2023 *)
A368298
a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+n) with i,j = 0, ..., n-1.
Original entry on oeis.org
1, 1, 53, 490614, 930744290905, 386735380538157813864, 36494318768452684668237864399892, 800075179375382235705309991148469060609055210, 4138855242465150993428071754285859188133806122546895149328625, 5109461743591866972924602083859433690113667142460933537037028649653229023827000
Offset: 0
a(3) = 490614:
5, 14, 42;
14, 42, 132;
42, 132, 429.
-
with(LinearAlgebra):
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> C(i+j+n-2)))):
seq(a(n), n=0..10); # Alois P. Heinz, Dec 20 2023
-
a[n_]:=If[n==0, 1, Permanent[Table[CatalanNumber[i+j+n], {i, 0, n-1}, {j, 0, n-1}]]]; Array[a,10,0]