cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A372351 Odd bisection of A371094.

Original entry on oeis.org

21, 21, 341, 45, 117, 69, 341, 93, 213, 117, 5461, 141, 309, 165, 725, 189, 405, 213, 1877, 237, 501, 261, 1109, 285, 597, 309, 5461, 333, 693, 357, 1493, 381, 789, 405, 3413, 429, 885, 453, 1877, 477, 981, 501, 87381, 525, 1077, 549, 2261, 573, 1173, 597, 4949, 621, 1269, 645, 2645, 669, 1365, 693, 11605, 717
Offset: 1

Views

Author

Antti Karttunen, Apr 28 2024

Keywords

Crossrefs

Row 2 of A372282.
Cf. A371094, and array A371100 (gives the same terms, in different order).
Cf. A372290 (the range of this sequence), A372291 (numbers that occur only once), A372292 (more than once), A372293 (odd numbers not occurring here).

Programs

  • Mathematica
    Table[With[{e = IntegerExponent[6*n - 2, 2]}, (6*n - 2)*2^e + (4^e - 1)/3], {n, 100}] (* Paolo Xausa, Apr 29 2024 *)
  • PARI
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372351(n) = A371094(n+n-1);
    
  • Python
    def A372351(n): return ((m:=6*n-2)<<(e:=(~m & m-1).bit_length()))+((1<<(e<<1))-1)//3 # Chai Wah Wu, Apr 28 2024

Formula

a(n) = A371094(2*n-1).

A372356 Array read by upward antidiagonals: A(n, k) = A372354(1+n,k)-A372354(n,k), n,k >= 1.

Original entry on oeis.org

4, 8, 3, 16, 8, 6, 32, 16, 12, 3, 64, 32, 24, 5, 3, 128, 64, 48, 9, 7, 3, 256, 128, 96, 21, 13, 5, 5, 512, 256, 192, 44, 25, 13, 12, 3, 1024, 512, 384, 88, 53, 28, 24, 5, 3, 2048, 1024, 768, 176, 108, 56, 48, 8, 9, 2, 4096, 2048, 1536, 352, 216, 112, 96, 21, 20, 7, 8, 8192, 4096, 3072, 704, 432, 224, 192, 44, 40, 13, 16, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2024

Keywords

Examples

			Array begins:
n\k|    1     2     3    4    5    6     7    8     9   10    11   12   13   14
---+-----------------------------------------------------------------------------
1  |    4,    3,    6,   3,   3,   3,    5,   3,    3,   2,    8,   3,   4,   3,
2  |    8,    8,   12,   5,   7,   5,   12,   5,    9,   7,   16,   4,   6,   5,
3  |   16,   16,   24,   9,  13,  13,   24,   8,   20,  13,   32,  13,  15,  11,
4  |   32,   32,   48,  21,  25,  28,   48,  21,   40,  25,   64,  28,  29,  21,
5  |   64,   64,   96,  44,  53,  56,   96,  44,   80,  53,  128,  56,  57,  40,
6  |  128,  128,  192,  88, 108, 112,  192,  88,  160, 108,  256, 112, 117,  81,
7  |  256,  256,  384, 176, 216, 224,  384, 176,  320, 216,  512, 224, 236, 161,
8  |  512,  512,  768, 352, 432, 448,  768, 352,  640, 432, 1024, 448, 472, 324,
9  | 1024, 1024, 1536, 704, 864, 896, 1536, 704, 1280, 864, 2048, 896, 944, 647,
		

Crossrefs

Columnwise first differences of A372354.

Programs

A372360 Array read by upward antidiagonals: A(n, k) = A000120(A372361(n, k)), n,k >= 1; Binary weights of terms of arrays A372359 and A372361.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, May 01 2024

Keywords

Comments

Entry A(n, k) at row n and column k tells how many bits needs to be flipped in the binary expansion of the (n-1)-th iterate of Reduced Collatz function R, when started from 2*k-1, to obtain the unique term of A086893 with the same binary length as that (n-1)-th iterate. That is, A(n, k) gives the Hamming distance between A372283(n, k) and A086893(1+A000523(A372283(n, k))).
Zeros occur in the same locations as where they occur in A372359, etc.

Examples

			Array begins:
n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
---+-------------------------------------------------------------------------
1  | 0, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 2, 3, 1, 2, 2, 3, 1, 2, 3, 4, 2, 3,
2  | 0, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 3, 2, 3, 2, 3, 2, 0, 1, 3, 2, 2, 1, 2,
3  | 0, 0, 0, 1, 2, 0, 0, 3, 0, 2, 0, 0, 1, 2, 1, 2, 2, 0, 2, 2, 3, 1, 0, 5,
4  | 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 3, 0, 5, 1, 0, 1, 3, 2, 1, 0, 4,
5  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 4, 2, 0, 0, 2, 5, 1, 0, 3,
6  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 1, 0, 0, 2, 4, 2, 0, 3,
7  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 0, 0, 1, 3, 1, 0, 4,
8  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 2, 3, 0, 0, 3,
9  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 1, 4, 0, 0, 4,
10 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 3, 0, 0, 4,
11 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 4, 0, 0, 5,
12 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5, 0, 0, 0, 0, 4, 0, 0, 3,
13 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 5, 0, 0, 6,
14 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 6, 0, 0, 0, 0, 3, 0, 0, 2,
15 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 6, 0, 0, 4,
16 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4,
17 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 0, 4,
18 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4, 0, 0, 3,
19 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 0, 0, 0, 4, 0, 0, 4,
20 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 3, 0, 0, 6,
21 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 0, 0, 0, 0, 4, 0, 0, 4,
We have A372283(5, 14) = 71, and when we compare the binary expansion of 71 = 1000111_2 with the term of A086893 that has a binary expansion of the same length, which in this case is 85 = 1010101_2, we see that only the bits at positions 1 and 4 (indexed from the right hand end, with 0 being the least significant bit position at right) need to be toggled to obtain the 71 from 85 or vice versa, therefore A(5, 14) = 2.
We have A372283(6, 14) = 107 = 1101011_2, and when xored with A086893(7) = 85 = 1010101_2, we obtain A372361(6, 14) = 62 = 111110_2, with five 1-bits, therefore A(6, 14) = 5. I.e., five bits (all except the least and the most significant bit) need to be flipped to change 85 to 107 or vice versa.
		

Crossrefs

Binary weights of A372359 and A372361.
Cf. also A372288.

Programs

Formula

A(n, k) = A000120(A372361(n, k)) = A000120(A372358(A372283(n, k))).
A(n, k) = A000120(A372359(n, k)) = A000120(A372358(A372282(n, k))).

A372560 Array read by upward antidiagonals: A(n, k) = A371094(A(n-1, k)) for n > 1, k >= 1; A(1, k) = A372443(k-1).

Original entry on oeis.org

27, 165, 41, 8021, 501, 31, 12408149, 48469, 189, 47, 19607957362005, 299193685, 4565, 285, 71, 32439509492992549521282389, 7552911875069269, 1758549, 6869, 429, 107, 58947232705679751034215288252890081792789279233365, 3195535888075328282939605996885, 173230347605, 2643285, 10325, 645, 161
Offset: 1

Views

Author

Antti Karttunen, May 08 2024

Keywords

Examples

			Array begins:
n\k|        1          2        3        4        5         6           7
---+-----------------------------------------------------------------------
1  |       27,        41,      31,      47,      71,      107,        161,
2  |      165,       501,     189,     285,     429,      645,       1941,
3  |     8021,     48469,    4565,    6869,   10325,    31061,     374101,
4  | 12408149, 299193685, 1758549, 2643285, 7951701, 95769941, 9216283989,
		

Crossrefs

Cf. A371094, A372282, A372443 (the top row), A372444 (the leftmost column), A372561.

Programs

  • PARI
    up_to = 28;
    A000265(n) = (n>>valuation(n,2));
    A372443(n) = { my(x=27); while(n, x=A000265(3*x+1); n--); (x); };
    A371094(n) = { my(m=1+3*n, e=valuation(m,2)); ((m*(2^e)) + (((4^e)-1)/3)); };
    A372560sq(n,k) = if(1==n,A372443(k-1),A371094(A372560sq(n-1,k)));
    A372560list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A372560sq((a-(col-1)),col))); (v); };
    v372560 = A372560list(up_to);
    A372560(n) = v372560[n];

A372561 Array read by upward antidiagonals: A(n, k) = A265745(A372560(n, k)) for n > 1, k >= 1.

Original entry on oeis.org

3, 5, 5, 5, 5, 3, 5, 5, 5, 3, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10347, 6251, 2155, 1131, 619, 363, 235, 107, 43, 27, 11, 7, 5
Offset: 1

Views

Author

Antti Karttunen, May 08 2024

Keywords

Comments

In general, it seems that for n>2, k>1, A(n, k) = A(n-1, k+1) = A(k, n), except on those two anomalous antidiagonals, first on the thirteenth antidiagonal, where for n=1..13, A(n,14-n) obtains values 5, 7, 11, 27, 43, 107, 235, 363, 619, 1131, 2155, 6251, 10347, and then on the 30th antidiagonal, where for n=1.., A(n,31-n) obtains values 5, 11, 15, 23, 39, 71, 135, 391, 647, 1671, 2695, 4743, 17031, 33415, 49799, 82567, 148103, 410247, etc. The corresponding antidiagonals in A372560 begin as:
233, 933, 14933, 978670933, 64138178286933, 1183140560213014108063589658350933, ..., and:
911, 58325, 933205, 238900565, 15656587449685, 67244531063362552157525, etc. I conjecture that for the former sequence of numbers x, from 933 onward, A372555(x) = 7, and for the latter sequence of numbers y, from 58325 onward, A372555(y) = 9, and that the array A372555(A372560(n, k)) is symmetric apart from its borders, i.e, that for n, k > 1, A372555(A372560(n, k)) = A372555(A372560(k, n)).

Examples

			Array begins:
n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21
---+----------------------------------------------------------------
1  | 3, 5, 3, 3, 5, 3, 5, 5, 3, 5, 5, 5, 5, 3, 5, 3, 7, 5, 7, 5, 5,
2  | 5, 5, 5, 5, 3, 5, 5, 3, 5, 5, 5, 7, 5, 5, 5, 7, 5, 7, 7, 5, 5,
3  | 5, 5, 5, 3, 5, 5, 3, 5, 5, 5, 11, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7,
4  | 5, 5, 3, 5, 5, 3, 5, 5, 5, 27, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9,
5  | 5, 3, 5, 5, 3, 5, 5, 5, 43, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7,
6  | 3, 5, 5, 3, 5, 5, 5, 107, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7,
7  | 5, 5, 3, 5, 5, 5, 235, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7,
8  | 5, 3, 5, 5, 5, 363, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9,
9  | 3, 5, 5, 5, 619, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7,
10 | 5, 5, 5, 1131, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 1671,
11 | 5, 5, 2155, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 2695, 3,
12 | 5, 6251, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 4743, 3, 5,
13 | 10347, 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 17031, 3, 5, 3,
14 | 5, 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 33415, 3, 5, 3, 5,
15 | 5, 5, 7, 5, 7, 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 49799, 3, 5, 3, 5, 5,
etc.
From column 19 to column 41, the first 11 rows:
n\k|19 20 ........................................................... 40 41
---+-------------------------------------------------------------------------
1  | 7, 5, 5, 5, 7, 7, 5, 5, 5, 7, 7, 5,    3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 1,
2  | 7, 5, 5, 7, 9, 7, 7, 7, 9, 7, 11,   3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1,
3  | 5, 5, 7, 9, 7, 7, 7, 9, 7, 15,   3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1,
4  | 5, 7, 9, 7, 7, 7, 9, 7, 23,   3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1,
5  | 7, 9, 7, 7, 7, 9, 7, 39,   3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1,
6  | 9, 7, 7, 7, 9, 7, 71,   3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1,
7  | 7, 7, 7, 9, 7, 135,  3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1,
8  | 7, 7, 9, 7, 391,  3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1,
9  | 7, 9, 7, 647,  3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1,
10 | 9, 7, 1671, 3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
11 | 7, 2695, 3, 5, 3, 5, 5, 5, 5, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
		

Crossrefs

Programs

A372357 Array read by upward antidiagonals: A(n, k) = A372356(1+n,k)-2*A372356(n,k), n,k >= 1.

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 3, -1, -1, 0, 0, 0, 2, -1, 3, 2, 0, 0, 0, 0, 3, 2, 0, -1, 0, 0, 0, 0, 2, 0, 0, -2, 3, 0, 0, 0, 0, 0, 0, 0, 5, 2, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 5, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 3, -1
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2024

Keywords

Examples

			Array begins:
n\k| 1  2  3   4   5   6  7   8  9  10 11  12  13  14  15  16  17 18  19  20  21
---+-----------------------------------------------------------------------------
1  | 0, 2, 0, -1,  1, -1, 2, -1, 3,  3, 0, -2, -2, -1, -1, -1,  2, 5,  1,  1,  1,
2  | 0, 0, 0, -1, -1,  3, 0, -2, 2, -1, 0,  5,  3,  1, -1, -2, -2, 2, -1,  0, -1,
3  | 0, 0, 0,  3, -1,  2, 0,  5, 0, -1, 0,  2, -1, -1,  3,  1,  3, 0, -1, -2, -2,
4  | 0, 0, 0,  2,  3,  0, 0,  2, 0,  3, 0,  0, -1, -2,  2, -1, -1, 0,  3,  4,  1,
5  | 0, 0, 0,  0,  2,  0, 0,  0, 0,  2, 0,  0,  3,  1,  0,  2, -1, 0,  2, -2, -1,
6  | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  2, -1,  0, -1,  3, 0,  0,  3,  2,
7  | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  2,  0, -1,  2, 0,  0, -1, -1,
8  | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -1,  0,  1,  0, 0,  0, -1, -1,
9  | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -1,  0, -2,  0, 0,  0,  3,  1,
10 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  1,  0,  2,  0, 0,  0,  2, -2,
11 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -2,  0, -1,  0, 0,  0,  0,  2,
12 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  2,  0, -2,  0, 0,  0,  0, -1,
13 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -1,  0,  1,  0, 0,  0,  0, -2,
14 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -2,  0, -1,  0, 0,  0,  0,  1,
15 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  1,  0,  3,  0, 0,  0,  0, -1,
16 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -1,  0, -2,  0, 0,  0,  0,  3,
17 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  3,  0,  1,  0, 0,  0,  0, -2,
18 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -2,  0,  0,  0, 0,  0,  0,  1,
19 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  1,  0, -2,  0, 0,  0,  0,  0,
20 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0,  0,  0,  2,  0, 0,  0,  0, -2,
21 | 0, 0, 0,  0,  0,  0, 0,  0, 0,  0, 0,  0,  0, -2,  0, -2,  0, 0,  0,  0,  2,
		

Crossrefs

Programs

A372355 Array read by upward antidiagonals: A(n,k) = A372285(1+n, k)-A372285(n, k), n,k >= 1.

Original entry on oeis.org

4, 8, 5, 16, 8, 6, 32, 16, 12, 3, 64, 32, 24, 5, 2, 128, 64, 48, 12, 7, 3, 256, 128, 96, 23, 13, 8, 7, 512, 256, 192, 44, 28, 15, 12, 1, 1024, 512, 384, 88, 55, 28, 24, 5, 6, 2048, 1024, 768, 176, 108, 56, 48, 13, 11, 3, 4096, 2048, 1536, 352, 216, 112, 96, 23, 20, 7, 8, 8192, 4096, 3072, 704, 432, 224, 192, 44, 40, 13, 16, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2024

Keywords

Examples

			Array begins:
n\k|    1     2      3     4     5     6      7     8      9    10     11    12
---+----------------------------------------------------------------------------
1  |    4,    5,     6,    3,    2,    3,     7,    1,     6,    3,     8,    3,
2  |    8,    8,    12,    5,    7,    8,    12,    5,    11,    7,    16,    9,
3  |   16,   16,    24,   12,   13,   15,    24,   13,    20,   13,    32,   15,
4  |   32,   32,    48,   23,   28,   28,    48,   23,    40,   28,    64,   28,
5  |   64,   64,    96,   44,   55,   56,    96,   44,    80,   55,   128,   56,
6  |  128,  128,   192,   88,  108,  112,   192,   88,   160,  108,   256,  112,
7  |  256,  256,   384,  176,  216,  224,   384,  176,   320,  216,   512,  224,
8  |  512,  512,   768,  352,  432,  448,   768,  352,   640,  432,  1024,  448,
9  | 1024, 1024,  1536,  704,  864,  896,  1536,  704,  1280,  864,  2048,  896,
10 | 2048, 2048,  3072, 1408, 1728, 1792,  3072, 1408,  2560, 1728,  4096, 1792,
11 | 4096, 4096,  6144, 2816, 3456, 3584,  6144, 2816,  5120, 3456,  8192, 3584,
12 | 8192, 8192, 12288, 5632, 6912, 7168, 12288, 5632, 10240, 6912, 16384, 7168,
		

Crossrefs

Columnwise first differences of A372285.
Cf. also A372353.

Programs

Previous Showing 11-17 of 17 results.