cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 70 results. Next

A374758 Sum of leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 5, 6, 3, 5, 5, 6, 5, 6, 5, 5, 4, 5, 5, 6, 5, 4, 5, 6, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 6, 5, 6, 4, 4, 6, 6, 7, 6, 5, 4, 6, 5, 6, 6, 7, 6, 5, 6, 7, 6, 6
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The maximal strictly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)) with leaders (3,2,2,2,5,1,1), so a(1234567) = 16.
		

Crossrefs

Row sums of A374757.
For leaders of constant runs we have A373953.
For leaders of anti-runs we have A374516.
For leaders of weakly increasing runs we have A374630.
For length instead of sum we have A124769.
The opposite version is A374684, sum of A374683 (length A124768).
The case of partitions ranked by Heinz numbers is A374706.
The weak version is A374741, sum of A374740 (length A124765).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Greater]],{n,0,100}]

A376307 Run-sums of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 2, 2, 3, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 6, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 6, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 6, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with sums A376307 (this sequence).
		

Crossrefs

Run-sums of first differences of A005117.
Before taking run-sums we had A076259, ones A375927.
For the squarefree numbers themselves we have A373413.
For prime instead of squarefree numbers we have A373822, halved A373823.
For compression instead of run-sums we have A376305, ones A376342.
For run-lengths instead of run-sums we have A376306.
For prime-powers instead of squarefree numbers we have A376310.
For positions of first appearances instead of run-sums we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A374684 Sum of leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 1, 3, 4, 4, 4, 4, 1, 2, 2, 4, 5, 5, 5, 5, 2, 5, 3, 5, 1, 2, 3, 3, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 4, 6, 2, 3, 6, 6, 3, 4, 4, 6, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 4, 4, 3, 4, 4, 6, 7, 7, 7, 7, 7, 7, 5, 7, 3, 7, 7, 7, 4, 5, 5, 7, 2, 3, 4, 4, 4, 7, 5
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)) with leaders (3,2,1,2,1,1,1,1), so a(1234567) = 12.
		

Crossrefs

The weak version is A374630.
Row-sums of A374683.
The opposite version is A374758.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Run-length transform is A333627.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Cf. A374251 (sums A373953), A374515 (sums A374516), A374740 (sums A374741).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Less]],{n,0,100}]

A374678 Number of integer compositions of n whose leaders of maximal anti-runs are not distinct.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 15, 32, 70, 144, 311, 653, 1354, 2820, 5850, 12054, 24810, 50923, 104206, 212841, 433919, 882930, 1793810, 3639248, 7373539, 14921986
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The anti-runs of y = (1,1,2,2) are ((1),(1,2),(2)) with leaders (1,1,2) so y is counted under a(6).
The a(0) = 0 through a(6) = 15 compositions:
  .  .  (11)  (111)  (22)    (113)    (33)
                     (112)   (221)    (114)
                     (1111)  (1112)   (222)
                             (1121)   (1113)
                             (1211)   (1122)
                             (2111)   (1131)
                             (11111)  (1311)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

For constant runs we have A335548, complement A274174, ranks A374249.
The complement is counted by A374518, ranks A374638.
For weakly increasing runs we have complement A374632, ranks A374768.
Compositions of this type are ranked by A374639.
For identical instead of distinct leaders we have A374640, ranks A374520, complement A374517, ranks A374519.
A003242 counts anti-runs, ranks A333489.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374680 Number of integer compositions of n whose leaders of anti-runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 16, 31, 52, 98, 179, 323, 590, 1078, 1945, 3531, 6421, 11621, 21041, 38116, 68904, 124562, 225138, 406513, 733710, 1323803
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 16 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (131)  (123)
                             (212)  (132)
                             (311)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (2112)
                                    (2121)
		

Crossrefs

For distinct but not necessarily decreasing leaders we have A374518.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
- For leaders of strictly increasing runs we have A374689.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374681 Number of integer compositions of n whose leaders of anti-runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 50, 96, 185, 353, 672, 1289, 2466, 4722, 9052, 17342, 33244, 63767, 122325, 234727, 450553, 864975, 1660951, 3190089, 6128033
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 14 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (1211)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
Other types of runs (instead of anti-):
- For leaders of constant runs we have A000041.
- For leaders of weakly decreasing runs we have A188900.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of strictly decreasing runs we have A374764.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374682 Number of integer compositions of n whose leaders of anti-runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 59, 114, 222, 434, 844, 1641, 3189, 6192, 12020, 23320, 45213, 87624, 169744, 328684, 636221, 1231067, 2381269, 4604713, 8901664
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (131)
                        (1111)  (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

For reversed partitions instead of compositions we have A115029.
The complement is A374699.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A189076, complement A374636.
- For leaders of weakly decreasing runs we have A374747.
- For leaders of strictly decreasing runs we have A374765.
- For leaders of strictly increasing runs we have A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374762 Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are strictly decreasing. The weakly decreasing version is A374764.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)
                (12)  (13)   (14)   (15)   (16)
                (21)  (31)   (23)   (24)   (25)
                      (121)  (32)   (42)   (34)
                             (41)   (51)   (43)
                             (131)  (123)  (52)
                                    (132)  (61)
                                    (141)  (124)
                                    (213)  (142)
                                    (231)  (151)
                                    (321)  (214)
                                           (232)
                                           (241)
                                           (421)
                                           (1213)
                                           (1231)
                                           (1321)
                                           (2131)
		

Crossrefs

For partitions instead of compositions we have A000009.
The weak version appears to be A188900.
The opposite version is A374689.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of anti-runs we have A374679.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: Product_{k>=1} (1 + x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374763 Number of integer compositions of n whose leaders of strictly decreasing runs are themselves strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 32, 47, 71, 106, 156, 227, 328, 473, 683, 986, 1421, 2040, 2916, 4149, 5882, 8314, 11727, 16515, 23221, 32593, 45655, 63810, 88979, 123789, 171838, 238055, 329187, 454451, 626412, 862164, 1184917, 1626124, 2228324, 3048982, 4165640, 5682847
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,1,1) has strictly decreasing runs ((3,1),(2,1),(1)), with leaders (3,2,1), so is counted under a(8).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)
                (21)  (31)   (32)   (42)   (43)    (53)
                      (211)  (41)   (51)   (52)    (62)
                             (311)  (312)  (61)    (71)
                                    (321)  (322)   (413)
                                    (411)  (412)   (422)
                                           (421)   (431)
                                           (511)   (512)
                                           (3121)  (521)
                                           (3211)  (611)
                                                   (3212)
                                                   (3221)
                                                   (4121)
                                                   (4211)
                                                   (31211)
		

Crossrefs

The opposite version is A374688.
The weak version is A374747.
For partitions instead of compositions we have A375133.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of weakly decreasing runs we have A374746.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n)={ my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q; p *= 1 + x^k; q *= 1 + x^k*p); Vec(r + x^(n\2+1)*q/(1-x)) } \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 + x^k*Product_{j=1..k} (1 + x^j)) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24) onwards from Andrew Howroyd, Dec 30 2024

A374764 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are weakly increasing [but weakly decreasing works too]. The strictly increasing version is A374762.

Examples

			The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
For strictly increasing leaders we have A374688.
The opposite version is A374697.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of weakly decreasing runs we have A188900.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly decreasing leaders we have A374765.
- For strictly decreasing leaders we have A374763.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j=1..k-1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024
Previous Showing 41-50 of 70 results. Next