cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A374761 Number of integer compositions of n whose leaders of strictly decreasing runs are distinct.

Original entry on oeis.org

1, 1, 1, 3, 5, 7, 13, 27, 45, 73, 117, 205, 365, 631, 1061, 1711, 2777, 4599, 7657, 12855, 21409, 35059, 56721, 91149, 146161, 234981, 379277, 612825, 988781, 1587635, 2533029, 4017951, 6342853, 9985087, 15699577, 24679859, 38803005, 60979839, 95698257, 149836255
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,4,3,2,1,2,8) has strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,8), so is counted under a(24).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (131)  (123)
                             (311)  (132)
                                    (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
		

Crossrefs

For leaders of identical runs we have A274174, ranked by A374249.
The weak opposite version is A374632, ranks A374768.
The opposite version is A374687, ranks A374698.
For identical instead of distinct leaders we have A374760, ranks A374759.
The weak version is A374743, ranks A374701.
Ranked by A374767.
For partitions instead of compositions we have A375133.
Other types of runs:
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374518, ranked by A374638.
Other types of run-leaders:
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],UnsameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    dfs(m, r, v) = 1 + sum(s=r, m, if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)*prod(i=t+1, s-1, 1+x^i))));
    lista(nn) = Vec(dfs(nn, 1, []) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A374634 Number of integer compositions of n whose leaders of weakly increasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 28, 43, 67, 103, 162, 245, 374, 569, 854, 1278, 1902, 2816, 4148, 6087, 8881, 12926, 18726, 27042, 38894, 55789, 79733, 113632, 161426, 228696, 323049, 455135, 639479, 896249, 1252905, 1747327, 2431035, 3374603, 4673880, 6459435, 8908173
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.

Examples

			The composition (1,3,3,2,4,3) has weakly increasing runs ((1,3,3),(2,4),(3)), with leaders (1,2,3), so is counted under a(16).
The a(0) = 1 through a(7) = 17 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (12)   (13)    (14)     (15)      (16)
                 (111)  (22)    (23)     (24)      (25)
                        (112)   (113)    (33)      (34)
                        (1111)  (122)    (114)     (115)
                                (1112)   (123)     (124)
                                (11111)  (132)     (133)
                                         (222)     (142)
                                         (1113)    (223)
                                         (1122)    (1114)
                                         (11112)   (1123)
                                         (111111)  (1132)
                                                   (1222)
                                                   (11113)
                                                   (11122)
                                                   (111112)
                                                   (1111111)
		

Crossrefs

Ranked by positions of strictly increasing rows in A374629 (sums A374630).
Types of runs (instead of weakly increasing):
- For leaders of constant runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of strictly increasing runs we have A374688.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we appear to have A188920.
- For weakly decreasing leaders we appear to have A189076.
- For identical leaders we have A374631.
- For distinct leaders we have A374632, ranks A374768.
- For weakly increasing leaders we have A374635.
A003242 counts anti-run compositions.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,LessEqual]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=u+1, min(m, r-1), x^s/(1-x^s) + sum(t=s+1, m-s, dfs(m-s-t, t, s)*x^(s+t)/prod(i=s, t, 1-x^i)));
    lista(nn) = Vec(dfs(nn, nn+1, 0) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A374760 Number of integer compositions of n whose leaders of strictly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (21)   (22)    (32)     (33)      (43)       (44)
                 (111)  (31)    (41)     (42)      (52)       (53)
                        (1111)  (212)    (51)      (61)       (62)
                                (221)    (222)     (313)      (71)
                                (11111)  (321)     (331)      (323)
                                         (2121)    (421)      (332)
                                         (111111)  (2122)     (431)
                                                   (2212)     (521)
                                                   (2221)     (2222)
                                                   (1111111)  (3131)
                                                              (21212)
                                                              (21221)
                                                              (22121)
                                                              (11111111)
		

Crossrefs

For partitions instead of compositions we have A034296.
The weak version is A374742, ranks A374744.
The opposite version is A374686, ranks A374685.
The weak opposite version is A374631, ranks A374633.
Ranked by A374759.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
Other types of run-leaders (instead of identical):
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1 + Sum_{k>=1} -1 + 1/(1 - x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A188900 Number of compositions of n that avoid the pattern 12-3.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 60, 114, 215, 402, 746, 1375, 2520, 4593, 8329, 15036, 27027, 48389, 86314, 153432, 271853, 480207, 845804, 1485703, 2603018, 4549521, 7933239, 13803293, 23966682, 41530721, 71830198, 124010381, 213725823, 367736268, 631723139, 1083568861
Offset: 0

Views

Author

Nathaniel Johnston, Apr 17 2011

Keywords

Comments

First differs from the non-dashed version A102726 at a(9) = 215, A102726(9) = 214, due to the composition (1,3,2,3).
The value a(11) = 7464 in Heubach et al. is a typo.
Theorem: A composition avoids 3-12 iff its leaders of maximal weakly decreasing runs are weakly increasing. For example, the composition q = (1,1,2,1,2,2,1,3) has maximal weakly decreasing runs ((1,1),(2,1),(2,2,1),(3)), with leaders (1,2,2,3), which are weakly increasing, so q is counted under a(13); also q avoids 3-12, as required. On the other hand, the composition q = (3,2,1,2,2,1,2) has maximal weakly decreasing runs ((3,2,1),(2,2,1),(2)), with leaders (3,2,2), which are not weakly increasing, so q is not counted under a(13); also q matches 3-12, as required. - Gus Wiseman, Aug 21 2024

Examples

			The initial terms are too dense, but see A375406 for the complement. - _Gus Wiseman_, Aug 21 2024
		

Crossrefs

The non-dashed version A102726, non-ranks A335483.
For 23-1 we have A189076.
The non-ranks are a subset of A335479 and do not include 404, 788, 809, ...
For strictly increasing leaders we have A358836, ranks A326533.
The strict version is A374762.
The complement is counted by A375406.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Maple
    with(PolynomialTools):n:=20:taypoly:=taylor(mul(1/(1 - x^i/mul(1-x^j,j=1..i-1)),i=1..n),x=0,n+1):seq(coeff(taypoly,x,m),m=0..n);
  • Mathematica
    m = 35;
    Product[1/(1 - x^i/Product[1 - x^j, {j, 1, i - 1}]), {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Mar 31 2020 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], LessEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)

Formula

G.f.: Product_{i>=1} (1/(1 - x^i/Product_{j=1..i-1} (1 - x^j))).
a(n) = 2^(n-1) - A375406(n). - Gus Wiseman, Aug 22 2024

A374679 Number of integer compositions of n whose leaders of anti-runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 15, 24, 45, 84, 142, 256, 464, 817, 1464, 2621, 4649, 8299, 14819, 26389, 47033, 83833, 149325, 266011, 473867, 843853
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                             (41)   (51)
                             (122)  (123)
                             (131)  (132)
                             (212)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (1212)
                                    (1221)
                                    (2121)
		

Crossrefs

For distinct but not necessarily increasing leaders we have A374518.
For partitions instead of compositions we have A375134.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly increasing runs we have A374688.
- For leaders of strictly decreasing runs we have A374762.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374517.
- For distinct leaders we have A374518.
- For weakly increasing leaders we have A374681.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024

A374688 Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing.

Examples

			The a(0) = 1 through a(9) = 16 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
                (12)  (13)  (14)   (15)   (16)   (17)    (18)
                            (23)   (24)   (25)   (26)    (27)
                            (122)  (123)  (34)   (35)    (36)
                                   (132)  (124)  (125)   (45)
                                          (133)  (134)   (126)
                                          (142)  (143)   (135)
                                                 (152)   (144)
                                                 (233)   (153)
                                                 (1223)  (162)
                                                 (1232)  (234)
                                                         (243)
                                                         (1224)
                                                         (1233)
                                                         (1242)
                                                         (1323)
		

Crossrefs

The weak version is A374635.
Ranked by positions of strictly increasing rows in A374683 (sums A374684).
The opposite version is A374763.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]

Extensions

a(26) and beyond from Christian Sievers, Aug 08 2024

A374763 Number of integer compositions of n whose leaders of strictly decreasing runs are themselves strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 32, 47, 71, 106, 156, 227, 328, 473, 683, 986, 1421, 2040, 2916, 4149, 5882, 8314, 11727, 16515, 23221, 32593, 45655, 63810, 88979, 123789, 171838, 238055, 329187, 454451, 626412, 862164, 1184917, 1626124, 2228324, 3048982, 4165640, 5682847
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,1,1) has strictly decreasing runs ((3,1),(2,1),(1)), with leaders (3,2,1), so is counted under a(8).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)
                (21)  (31)   (32)   (42)   (43)    (53)
                      (211)  (41)   (51)   (52)    (62)
                             (311)  (312)  (61)    (71)
                                    (321)  (322)   (413)
                                    (411)  (412)   (422)
                                           (421)   (431)
                                           (511)   (512)
                                           (3121)  (521)
                                           (3211)  (611)
                                                   (3212)
                                                   (3221)
                                                   (4121)
                                                   (4211)
                                                   (31211)
		

Crossrefs

The opposite version is A374688.
The weak version is A374747.
For partitions instead of compositions we have A375133.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of weakly decreasing runs we have A374746.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n)={ my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q; p *= 1 + x^k; q *= 1 + x^k*p); Vec(r + x^(n\2+1)*q/(1-x)) } \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 + x^k*Product_{j=1..k} (1 + x^j)) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24) onwards from Andrew Howroyd, Dec 30 2024

A374764 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are weakly increasing [but weakly decreasing works too]. The strictly increasing version is A374762.

Examples

			The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
For strictly increasing leaders we have A374688.
The opposite version is A374697.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of weakly decreasing runs we have A188900.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly decreasing leaders we have A374765.
- For strictly decreasing leaders we have A374763.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j=1..k-1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374765 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

The opposite version is A374690.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of weakly decreasing runs we have A374747.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
    lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025
Showing 1-10 of 10 results.