A374761
Number of integer compositions of n whose leaders of strictly decreasing runs are distinct.
Original entry on oeis.org
1, 1, 1, 3, 5, 7, 13, 27, 45, 73, 117, 205, 365, 631, 1061, 1711, 2777, 4599, 7657, 12855, 21409, 35059, 56721, 91149, 146161, 234981, 379277, 612825, 988781, 1587635, 2533029, 4017951, 6342853, 9985087, 15699577, 24679859, 38803005, 60979839, 95698257, 149836255
Offset: 0
The composition (3,1,4,3,2,1,2,8) has strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,8), so is counted under a(24).
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(12) (13) (14) (15)
(21) (31) (23) (24)
(121) (32) (42)
(211) (41) (51)
(131) (123)
(311) (132)
(141)
(213)
(231)
(312)
(321)
(411)
For identical instead of distinct leaders we have
A374760, ranks
A374759.
For partitions instead of compositions we have
A375133.
Other types of runs:
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
Other types of run-leaders:
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A034296,
A106356,
A188920,
A189076,
A238343,
A333213,
A374517,
A374631,
A374640,
A374686,
A374742.
-
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],UnsameQ@@First/@Split[#,Greater]&]],{n,0,15}]
-
dfs(m, r, v) = 1 + sum(s=r, m, if(!setsearch(v, s), dfs(m-s, s, setunion(v, [s]))*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, setunion(v, [s]))*x^(s+t)*prod(i=t+1, s-1, 1+x^i))));
lista(nn) = Vec(dfs(nn, 1, []) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A374760
Number of integer compositions of n whose leaders of strictly decreasing runs are identical.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 8, 11, 15, 21, 28, 38, 52, 70, 95, 129, 173, 234, 318, 428, 579, 784, 1059, 1433, 1942, 2630, 3564, 4835, 6559, 8902, 12094, 16432, 22340, 30392, 41356, 56304, 76692, 104499, 142448, 194264, 265015, 361664, 493749, 674278, 921113, 1258717
Offset: 0
The composition (3,3,2,1,3,2,1) has strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so is counted under a(15).
The a(0) = 1 through a(8) = 15 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (212) (51) (61) (62)
(221) (222) (313) (71)
(11111) (321) (331) (323)
(2121) (421) (332)
(111111) (2122) (431)
(2212) (521)
(2221) (2222)
(1111111) (3131)
(21212)
(21221)
(22121)
(11111111)
For partitions instead of compositions we have
A034296.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000005 for n > 0, ranks
A272919.
Other types of run-leaders (instead of identical):
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
Cf.
A000009,
A106356,
A188920,
A189076,
A238343,
A261982,
A333213,
A374632,
A374634,
A374635,
A374640,
A374761.
-
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@First/@Split[#,Greater]&]],{n,0,15}]
-
seq(n) = Vec(1 + sum(k=1, n, 1/(1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))-1)) \\ Andrew Howroyd, Jul 31 2024
A374689
Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0
The a(0) = 1 through a(8) = 21 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(12) (13) (14) (15) (16) (17)
(21) (31) (23) (24) (25) (26)
(32) (42) (34) (35)
(41) (51) (43) (53)
(212) (123) (52) (62)
(213) (61) (71)
(231) (124) (125)
(312) (214) (134)
(321) (241) (215)
(313) (251)
(412) (314)
(421) (323)
(341)
(413)
(431)
(512)
(521)
(2123)
(2312)
(3212)
The weak version appears to be
A189076.
Ranked by positions of strictly decreasing rows in
A374683.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374680.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of weakly decreasing runs we have
A374746.
- For leaders of strictly decreasing runs we have
A374763.
Types of run-leaders (instead of strictly decreasing):
- For strictly increasing leaders we have
A374688.
- For weakly increasing leaders we have
A374690.
- For weakly decreasing leaders we have
A374697.
A335456 counts patterns matched by compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
-
C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
C_x(50) \\ John Tyler Rascoe, Jul 29 2024
A374688
Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0
The a(0) = 1 through a(9) = 16 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9)
(12) (13) (14) (15) (16) (17) (18)
(23) (24) (25) (26) (27)
(122) (123) (34) (35) (36)
(132) (124) (125) (45)
(133) (134) (126)
(142) (143) (135)
(152) (144)
(233) (153)
(1223) (162)
(1232) (234)
(243)
(1224)
(1233)
(1242)
(1323)
Ranked by positions of strictly increasing rows in
A374683 (sums
A374684).
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374679.
- For leaders of weakly increasing runs we have
A374634.
- For leaders of strictly decreasing runs we have
A374762.
Types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we have
A374689.
- For weakly increasing leaders we have
A374690.
- For weakly decreasing leaders we have
A374697.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]
A374680
Number of integer compositions of n whose leaders of anti-runs are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 5, 8, 16, 31, 52, 98, 179, 323, 590, 1078, 1945, 3531, 6421, 11621, 21041, 38116, 68904, 124562, 225138, 406513, 733710, 1323803
Offset: 0
The a(0) = 1 through a(6) = 16 compositions:
() (1) (2) (3) (4) (5) (6)
(12) (13) (14) (15)
(21) (31) (23) (24)
(121) (32) (42)
(211) (41) (51)
(131) (123)
(212) (132)
(311) (141)
(213)
(231)
(312)
(321)
(411)
(1212)
(2112)
(2121)
For distinct but not necessarily decreasing leaders we have
A374518.
For partitions instead of compositions we have
A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of weakly decreasing runs we have
A374746.
- For leaders of strictly decreasing runs we have
A374763.
- For leaders of strictly increasing runs we have
A374689.
Other types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we have
A374681.
- For strictly increasing leaders we have
A374679.
- For weakly decreasing leaders we have
A374682.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374746
Number of integer compositions of n whose leaders of weakly decreasing runs are strictly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 12, 18, 31, 51, 86, 143, 241, 397, 657, 1082, 1771, 2889, 4697, 7605, 12269, 19720, 31580, 50412, 80205, 127208, 201149, 317171, 498717, 782076, 1223230, 1908381, 2969950, 4610949, 7141972, 11037276, 17019617, 26188490, 40213388, 61624824
Offset: 0
The a(0) = 1 through a(7) = 18 compositions:
() (1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (312) (331)
(11111) (321) (412)
(411) (421)
(2211) (511)
(3111) (2221)
(21111) (3112)
(111111) (3121)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Ranked by positions of strictly decreasing rows in
A374740, opp.
A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of anti-runs we have
A374680.
- For leaders of strictly increasing runs we have
A374689.
- For leaders of strictly decreasing runs we have
A374763.
Types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we appear to have
A188900.
- For identical leaders we have
A374742.
- For strictly increasing leaders we have opposite
A374634.
- For weakly decreasing leaders we have
A374747.
A335456 counts patterns matched by compositions.
A374748 counts compositions by sum of leaders of weakly decreasing runs.
Cf.
A000009,
A003242,
A106356,
A189076,
A238343,
A261982,
A333213,
A358836,
A374632,
A374635,
A374741.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
-
seq(n)={my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q/(1-x^k); p /= 1 - x^k; q *= (1 - x^k/(1-x^k) + x^k*p)/(1-x^k) ); Vec(r + x^(n\2+1)*q/(1-x))} \\ Andrew Howroyd, Dec 30 2024
A374762
Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.
Original entry on oeis.org
1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0
The a(0) = 1 through a(7) = 18 compositions:
() (1) (2) (3) (4) (5) (6) (7)
(12) (13) (14) (15) (16)
(21) (31) (23) (24) (25)
(121) (32) (42) (34)
(41) (51) (43)
(131) (123) (52)
(132) (61)
(141) (124)
(213) (142)
(231) (151)
(321) (214)
(232)
(241)
(421)
(1213)
(1231)
(1321)
(2131)
For partitions instead of compositions we have
A000009.
The weak version appears to be
A188900.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A374634.
- For leaders of anti-runs we have
A374679.
Other types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
- For weakly decreasing leaders we have
A374765.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A106356,
A188920,
A189076,
A238343,
A261982,
A333213,
A374518,
A374631,
A374632,
A374687,
A374742,
A374743.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
-
seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024
A374764
Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0
The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(1111) (122)
(131)
(212)
(221)
(1112)
(1121)
(11111)
For partitions instead of compositions we have
A034296.
For strictly increasing leaders we have
A374688.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374681.
- For leaders of weakly increasing runs we have
A374635.
- For leaders of strictly increasing runs we have
A374690.
- For leaders of weakly decreasing runs we have
A188900.
Other types of run-leaders (instead of weakly increasing):
- For strictly increasing leaders we have
A374762.
- For weakly decreasing leaders we have
A374765.
- For strictly decreasing leaders we have
A374763.
Cf.
A106356,
A188920,
A238343,
A261982,
A333213,
A374687,
A374679,
A374680,
A374742,
A374743,
A374747.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
-
seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024
A374765
Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0
The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (32) (33)
(111) (31) (41) (42)
(211) (212) (51)
(1111) (221) (222)
(311) (312)
(2111) (321)
(11111) (411)
(2121)
(2211)
(3111)
(21111)
(111111)
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we appear to have
A189076.
- For leaders of anti-runs we have
A374682.
- For leaders of strictly increasing runs we have
A374697.
- For leaders of weakly decreasing runs we have
A374747.
Other types of run-leaders (instead of weakly decreasing):
- For strictly increasing leaders we have
A374762.
- For strictly decreasing leaders we have
A374763.
- For weakly increasing leaders we have
A374764.
Cf.
A106356,
A188900,
A188920,
A238343,
A261982,
A333213,
A374635,
A374636,
A374689,
A374742,
A374743,
A375133.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
-
dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025
A376263
Number of strict integer compositions of n whose leaders of increasing runs are increasing.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0
The a(1) = 1 through a(9) = 11 compositions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)
(2,3) (2,4) (2,5) (2,6) (2,7)
(1,2,3) (3,4) (3,5) (3,6)
(1,3,2) (1,2,4) (1,2,5) (4,5)
(1,4,2) (1,3,4) (1,2,6)
(1,4,3) (1,3,5)
(1,5,2) (1,5,3)
(1,6,2)
(2,3,4)
(2,4,3)
For less-greater or greater-less we have
A294617.
A374700 counts compositions by sum of leaders of strictly increasing runs.
Cf.
A000110,
A008289,
A056823,
A106356,
A188920,
A238343,
A261982,
A274174,
A333213,
A374634,
A374683,
A374698,
A374763.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
-
\\ here Q(n) gives n-th row of A008289.
Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024
Showing 1-10 of 10 results.
Comments