cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A358836 Number of multiset partitions of integer partitions of n with all distinct block sizes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 28, 51, 92, 164, 289, 504, 871, 1493, 2539, 4290, 7201, 12017, 19939, 32911, 54044, 88330, 143709, 232817, 375640, 603755, 966816, 1542776, 2453536, 3889338, 6146126, 9683279, 15211881, 23830271, 37230720, 58015116, 90174847, 139820368, 216286593
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Comments

Also the number of integer compositions of n whose leaders of maximal weakly decreasing runs are strictly increasing. For example, the composition (1,2,2,1,3,1,4,1) has maximal weakly decreasing runs ((1),(2,2,1),(3,1),(4,1)), with leaders (1,2,3,4), so is counted under a(15). - Gus Wiseman, Aug 21 2024

Examples

			The a(1) = 1 through a(5) = 15 multiset partitions:
  {1}  {2}    {3}        {4}          {5}
       {1,1}  {1,2}      {1,3}        {1,4}
              {1,1,1}    {2,2}        {2,3}
              {1},{1,1}  {1,1,2}      {1,1,3}
                         {1,1,1,1}    {1,2,2}
                         {1},{1,2}    {1,1,1,2}
                         {2},{1,1}    {1},{1,3}
                         {1},{1,1,1}  {1},{2,2}
                                      {2},{1,2}
                                      {3},{1,1}
                                      {1,1,1,1,1}
                                      {1},{1,1,2}
                                      {2},{1,1,1}
                                      {1},{1,1,1,1}
                                      {1,1},{1,1,1}
From _Gus Wiseman_, Aug 21 2024: (Start)
The a(0) = 1 through a(5) = 15 compositions whose leaders of maximal weakly decreasing runs are strictly increasing:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
(End)
		

Crossrefs

The version for set partitions is A007837.
For sums instead of sizes we have A271619.
For constant instead of distinct sizes we have A319066.
These multiset partitions are ranked by A326533.
For odd instead of distinct sizes we have A356932.
The version for twice-partitions is A358830.
The case of distinct sums also is A358832.
Ranked by positions of strictly increasing rows in A374740, opposite A374629.
A001970 counts multiset partitions of integer partitions.
A011782 counts compositions.
A063834 counts twice-partitions, strict A296122.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],UnsameQ@@Length/@#&]],{n,0,10}]
    (* second program *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Less@@First/@Split[#,GreaterEqual]&]],{n,0,15}] (* Gus Wiseman, Aug 21 2024 *)
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, 1 + polcoef(g, k, y) + O(x*x^n)))} \\ Andrew Howroyd, Dec 31 2022

Formula

G.f.: Product_{k>=1} (1 + [y^k]P(x,y)) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 31 2022

A374742 Number of integer compositions of n whose leaders of weakly decreasing runs are identical.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 87, 138, 220, 349, 556, 881, 1403, 2229, 3551, 5653, 9019, 14387, 22988, 36739, 58785, 94100, 150765, 241658, 387617, 622002, 998658, 1604032, 2577512, 4143243, 6662520, 10716931, 17243904, 27753518, 44680121, 71947123, 115880662
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,3,2,1,3,3) has maximal weakly decreasing subsequences ((3,1),(3,2,1),(3,3)), with leaders (3,3,3), so is counted under a(16).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (321)
                                (2111)   (411)
                                (11111)  (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by A374744 = positions of identical rows in A374740, cf. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000005 for n > 0, ranks A272919.
- For leaders of anti-runs we have A374517, ranks A374519.
- For leaders of strictly increasing runs we have A374686, ranks A374685.
- For leaders of weakly increasing runs we have A374631, ranks A374633.
- For leaders of strictly decreasing runs we have A374760, ranks A374759.
Types of run-leaders (instead of identical):
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
- For distinct leaders we have A374743, ranks A374701.
- For weakly increasing leaders we appear to have A188900.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],SameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    B(i) = x^i/(1-x^i) * sum(j=1,i-1, x^j*prod(k=1,j, (1-x^k)^(-1)))
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N,-1+(1+x^i/(1-x^i))/(1-B(i))))}
    A_x(30) \\ John Tyler Rascoe, Apr 29 2025

Formula

G.f.: 1 + Sum_{i>0} -1 + (1 + x^i/(1 - x^i))/(1 - B(i,x)) where B(i,x) = x^i/(1 - x^i) * Sum_{j=1..i-1} x^j * Product_{k=1..j} (1 - x^k)^(-1). - John Tyler Rascoe, Apr 29 2025

Extensions

a(24)-a(40) from Alois P. Heinz, Jul 26 2024

A374743 Number of integer compositions of n whose leaders of weakly decreasing runs are distinct.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 105, 198, 371, 690, 1280, 2364, 4353, 7981, 14568, 26466, 47876, 86264, 154896, 277236, 494675, 879924, 1560275, 2757830, 4859010, 8534420, 14945107, 26096824, 45446624, 78939432, 136773519, 236401194, 407614349, 701147189, 1203194421
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition (1,3,1,4,1,2,2,1) has maximal weakly decreasing subsequences ((1),(3,1),(4,1),(2,2,1)), with leaders (1,3,4,2), so is counted under a(15).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (122)
                        (1111)  (131)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

Ranked by A374701 = positions of distinct rows in A374740, opposite A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A274174, ranks A374249.
- For leaders of anti-runs we have A374518, ranks A374638.
- For leaders of weakly increasing runs we have A374632, ranks A374768.
- For leaders of strictly increasing runs we have A374687, ranks A374698.
- For leaders of strictly decreasing runs we have A374761, ranks A374767.
Types of run-leaders (instead of distinct):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742.
- For strictly increasing leaders we have opposite A374634.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],UnsameQ@@First/@Split[#,GreaterEqual]&]],{n,0,15}]

Extensions

a(24)-a(36) from Alois P. Heinz, Jul 26 2024

A374748 Triangle read by rows where T(n,k) is the number of integer compositions of n whose leaders of weakly decreasing runs sum to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 2, 0, 1, 2, 6, 4, 3, 0, 1, 3, 9, 8, 7, 4, 0, 1, 3, 13, 15, 16, 11, 5, 0, 1, 4, 17, 24, 32, 28, 16, 6, 0, 1, 4, 23, 36, 58, 58, 44, 24, 8, 0, 1, 5, 28, 52, 96, 115, 100, 71, 34, 10, 0, 1, 5, 35, 72, 151, 203, 211, 176, 109, 49, 12
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   1   2
   0   1   2   3   2
   0   1   2   6   4   3
   0   1   3   9   8   7   4
   0   1   3  13  15  16  11   5
   0   1   4  17  24  32  28  16   6
   0   1   4  23  36  58  58  44  24   8
   0   1   5  28  52  96 115 100  71  34  10
   0   1   5  35  72 151 203 211 176 109  49  12
Row n = 6 counts the following compositions:
  .  (111111)  (222)    (33)     (42)    (51)    (6)
               (2211)   (321)    (411)   (141)   (15)
               (21111)  (3111)   (132)   (114)   (24)
                        (1221)   (1311)  (312)   (123)
                        (1122)   (1131)  (231)
                        (12111)  (1113)  (213)
                        (11211)  (2121)  (1212)
                        (11121)  (2112)
                        (11112)
		

Crossrefs

Column n = k is A000009.
Column k = 2 is A004526.
Row-sums are A011782.
For length instead of sum we have A238343.
The opposite rank statistic is A374630, row-sums of A374629.
Column k = 3 is A374702.
The center n = 2k is A374703.
The corresponding rank statistic is A374741 row-sums of A374740.
Types of runs (instead of weakly decreasing):
- For leaders of constant runs we have A373949.
- For leaders of anti-runs we have A374521.
- For leaders of weakly increasing runs we have A374637.
- For leaders of strictly increasing runs we have A374700.
- For leaders of strictly decreasing runs we have A374766.
Types of run-leaders:
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742, ranks A374744.
- For distinct leaders we have A374743, ranks A374701.
- For strictly decreasing leaders we have A374746.
- For weakly decreasing leaders we have A374747.
A003242 counts anti-run compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==k&]],{n,0,15},{k,0,n}]

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024

A374680 Number of integer compositions of n whose leaders of anti-runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 16, 31, 52, 98, 179, 323, 590, 1078, 1945, 3531, 6421, 11621, 21041, 38116, 68904, 124562, 225138, 406513, 733710, 1323803
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 16 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (131)  (123)
                             (212)  (132)
                             (311)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (2112)
                                    (2121)
		

Crossrefs

For distinct but not necessarily decreasing leaders we have A374518.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
- For leaders of strictly increasing runs we have A374689.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374747 Number of integer compositions of n whose leaders of weakly decreasing runs are themselves weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 43, 76, 136, 242, 431, 764, 1353, 2387, 4202, 7376, 12918, 22567, 39338, 68421, 118765, 205743, 355756, 614038, 1058023, 1820029, 3125916, 5360659, 9179700, 15697559, 26807303, 45720739, 77881393, 132505599, 225182047, 382252310, 648187055
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition y = (3,2,1,2,2,1,2,5,1,1,1) has weakly decreasing runs ((3,2,1),(2,2,1),(2),(5,1,1,1)), with leaders (3,2,2,5), which are not weakly decreasing, so y is not counted under a(21).
The a(0) = 1 through a(6) = 14 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by positions of weakly decreasing rows in A374740, opposite A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of strictly decreasing runs we have A374765.
Types of run-leaders (instead of weakly decreasing):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742, ranks A374744.
- For distinct leaders we have A374743, ranks A374701.
- For strictly increasing leaders we have opposite A374634.
- For strictly decreasing leaders we have A374746.
A011782 counts compositions.
A124765 counts weakly decreasing runs in standard compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r+1, min(m, u), x^s/(1-x^s) + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)/prod(i=t, s, 1-x^i)));
    lista(nn) = Vec(dfs(nn, 0, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A374763 Number of integer compositions of n whose leaders of strictly decreasing runs are themselves strictly decreasing.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 15, 22, 32, 47, 71, 106, 156, 227, 328, 473, 683, 986, 1421, 2040, 2916, 4149, 5882, 8314, 11727, 16515, 23221, 32593, 45655, 63810, 88979, 123789, 171838, 238055, 329187, 454451, 626412, 862164, 1184917, 1626124, 2228324, 3048982, 4165640, 5682847
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,1,1) has strictly decreasing runs ((3,1),(2,1),(1)), with leaders (3,2,1), so is counted under a(8).
The a(0) = 1 through a(8) = 15 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)
                (21)  (31)   (32)   (42)   (43)    (53)
                      (211)  (41)   (51)   (52)    (62)
                             (311)  (312)  (61)    (71)
                                    (321)  (322)   (413)
                                    (411)  (412)   (422)
                                           (421)   (431)
                                           (511)   (512)
                                           (3121)  (521)
                                           (3211)  (611)
                                                   (3212)
                                                   (3221)
                                                   (4121)
                                                   (4211)
                                                   (31211)
		

Crossrefs

The opposite version is A374688.
The weak version is A374747.
For partitions instead of compositions we have A375133.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of weakly decreasing runs we have A374746.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n)={ my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q; p *= 1 + x^k; q *= 1 + x^k*p); Vec(r + x^(n\2+1)*q/(1-x)) } \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 + x^k*Product_{j=1..k} (1 + x^j)) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24) onwards from Andrew Howroyd, Dec 30 2024

A375140 Number of integer compositions of n whose leaders of weakly increasing runs are not strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 10, 26, 65, 151, 343, 750, 1614, 3410, 7123, 14724, 30220, 61639, 125166, 253233, 510936, 1028659, 2067620, 4150699, 8324552, 16683501, 33417933, 66910805, 133931495, 268023257, 536279457, 1072895973, 2146277961, 4293254010, 8587507415
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2024

Keywords

Comments

The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed patterns 1-32 or 1-21.

Examples

			The a(1) = 0 through a(6) = 10 compositions:
     .  .  .  (121)  (131)   (132)
                     (1121)  (141)
                     (1211)  (1131)
                             (1212)
                             (1221)
                             (1311)
                             (2121)
                             (11121)
                             (11211)
                             (12111)
		

Crossrefs

For leaders of identical runs we have A056823.
The complement is counted by A188920.
Leaders of weakly increasing runs are rows of A374629, sum A374630.
For weakly decreasing leaders we have A374636, ranks A375137 or A375138.
For leaders of weakly decreasing runs we have the complement of A374746.
Compositions of this type are ranked by A375295, reverse A375296.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A335548 counts non-contiguous compositions, ranks A374253.
A374637 counts compositions by sum of leaders of weakly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!Greater@@First/@Split[#,LessEqual]&]],{n,15}]
    - or -
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,_,z_,y_,_}/;x<=y
    				

Formula

a(n) = 2^(n-1) - A188920(n).

A375295 Numbers k such that the leaders of maximal weakly increasing runs in the k-th composition in standard order (row k of A066099) are not strictly decreasing.

Original entry on oeis.org

13, 25, 27, 29, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 82, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 153, 155, 157, 162, 165, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189
Offset: 1

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

First differs from the non-dashed version in lacking 166, corresponding to the composition (2,3,1,2).
The leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed patterns 1-32 or 1-21.

Examples

			The sequence together with corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  82: (2,3,2)
  89: (2,1,3,1)
  91: (2,1,2,1,1)
  93: (2,1,1,2,1)
		

Crossrefs

For leaders of identical runs we have A335485.
Positions of non-strictly decreasing rows in A374629 (sums A374630).
For identical leaders we have A374633, counted by A374631.
Matching 1-32 only gives A375137, reverse A375138, both counted by A374636.
Interchanging weak/strict gives A375139, counted by A375135.
Compositions of this type are counted by A375140, complement A188920.
The reverse version is A375296.
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A374637 counts compositions by sum of leaders of weakly increasing runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!Greater@@First/@Split[stc[#],LessEqual]&]
    - or -
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x<=y
    				
Showing 1-10 of 10 results.