A374702 Number of integer compositions of n whose leaders of maximal weakly decreasing runs sum to 3. Column k = 3 of A374748.
0, 0, 0, 2, 3, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 99, 111, 123, 137, 150, 165, 180, 196, 212, 230, 247, 266, 285, 305, 325, 347, 368, 391, 414, 438, 462, 488, 513, 540, 567, 595, 623, 653, 682, 713, 744, 776, 808, 842, 875, 910, 945, 981
Offset: 0
Examples
The a(0) = 0 through a(8) = 17 compositions: . . . (3) (31) (32) (33) (322) (332) (12) (112) (122) (321) (331) (3221) (121) (311) (1122) (1222) (3311) (1112) (1221) (3211) (11222) (1121) (3111) (11122) (12221) (1211) (11112) (11221) (32111) (11121) (12211) (111122) (11211) (31111) (111221) (12111) (111112) (112211) (111121) (122111) (111211) (311111) (112111) (1111112) (121111) (1111121) (1111211) (1112111) (1121111) (1211111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..10000
- Gus Wiseman, Sequences counting and ranking compositions by their leaders (for six types of runs).
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==3&]],{n,0,15}]
-
PARI
seq(n)={Vec((2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3) + O(x^(n-2)), -n-1)} \\ Andrew Howroyd, Aug 14 2024
Formula
G.f.: x^3*(2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3). - Andrew Howroyd, Aug 14 2024
Extensions
a(27) onwards from Andrew Howroyd, Aug 14 2024
Comments