cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A375136 Number of maximal strictly increasing runs in the weakly increasing prime factors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2024

Keywords

Comments

For n > 1, this is one more than the number of adjacent equal terms in the multiset of prime factors of n.

Examples

			The prime factors of 540 are {2,2,3,3,3,5}, with maximal strictly increasing runs ({2},{2,3},{3},{3,5}), so a(540) = 4.
		

Crossrefs

For compositions we have A124768, row-lengths of A374683, sum A374684.
For sum of prime indices we have A374706.
Row-lengths of A375128.
A112798 lists prime indices:
- distinct A001221
- length A001222
- leader A055396
- sum A056239
- reverse A296150

Programs

  • Mathematica
    Table[Length[Split[Flatten[ConstantArray@@@FactorInteger[n]],Less]],{n,100}]

Formula

For n > 1, a(n) = A046660(n) + 1 = A001222(n) - A001221(n) + 1.

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024

A374758 Sum of leaders of strictly decreasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 5, 4, 3, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 5, 6, 3, 5, 5, 6, 5, 6, 5, 5, 4, 5, 5, 6, 5, 4, 5, 6, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 7, 6, 5, 6, 4, 4, 6, 6, 7, 6, 5, 4, 6, 5, 6, 6, 7, 6, 5, 6, 7, 6, 6
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The maximal strictly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)) with leaders (3,2,2,2,5,1,1), so a(1234567) = 16.
		

Crossrefs

Row sums of A374757.
For leaders of constant runs we have A373953.
For leaders of anti-runs we have A374516.
For leaders of weakly increasing runs we have A374630.
For length instead of sum we have A124769.
The opposite version is A374684, sum of A374683 (length A124768).
The case of partitions ranked by Heinz numbers is A374706.
The weak version is A374741, sum of A374740 (length A124765).
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Greater]],{n,0,100}]

A374688 Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing.

Examples

			The a(0) = 1 through a(9) = 16 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
                (12)  (13)  (14)   (15)   (16)   (17)    (18)
                            (23)   (24)   (25)   (26)    (27)
                            (122)  (123)  (34)   (35)    (36)
                                   (132)  (124)  (125)   (45)
                                          (133)  (134)   (126)
                                          (142)  (143)   (135)
                                                 (152)   (144)
                                                 (233)   (153)
                                                 (1223)  (162)
                                                 (1232)  (234)
                                                         (243)
                                                         (1224)
                                                         (1233)
                                                         (1242)
                                                         (1323)
		

Crossrefs

The weak version is A374635.
Ranked by positions of strictly increasing rows in A374683 (sums A374684).
The opposite version is A374763.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]

Extensions

a(26) and beyond from Christian Sievers, Aug 08 2024

A374697 Number of integer compositions of n whose leaders of strictly increasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 29, 55, 103, 193, 360, 669, 1239, 2292, 4229, 7794, 14345, 26375, 48452, 88946, 163187, 299250, 548543, 1005172, 1841418, 3372603, 6175853, 11307358, 20699979, 37890704, 69351776, 126926194, 232283912, 425075191, 777848212, 1423342837, 2604427561
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are weakly decreasing [weakly increasing works too].

Examples

			The composition (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), so is not counted under a(12).
The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (131)
                        (1111)  (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

The opposite version is A374764.
Ranked by positions of weakly decreasing rows in A374683.
Interchanging weak/strict appears to give A188920, opposite A358836.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374682.
- For leaders of weakly increasing runs we have A189076, complement A374636.
- For leaders of weakly decreasing runs we have A374747.
- For leaders of strictly decreasing runs we have A374765.
Types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For weakly increasing leaders we have A374690.
- For strictly increasing leaders we have A374688.
- For strictly decreasing leaders we have A374689.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=k+1, n-k, 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j>=k+1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jul 31 2024

A374680 Number of integer compositions of n whose leaders of anti-runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 16, 31, 52, 98, 179, 323, 590, 1078, 1945, 3531, 6421, 11621, 21041, 38116, 68904, 124562, 225138, 406513, 733710, 1323803
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(6) = 16 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (31)   (23)   (24)
                      (121)  (32)   (42)
                      (211)  (41)   (51)
                             (131)  (123)
                             (212)  (132)
                             (311)  (141)
                                    (213)
                                    (231)
                                    (312)
                                    (321)
                                    (411)
                                    (1212)
                                    (2112)
                                    (2121)
		

Crossrefs

For distinct but not necessarily decreasing leaders we have A374518.
For partitions instead of compositions we have A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
- For leaders of strictly increasing runs we have A374689.
Other types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374681 Number of integer compositions of n whose leaders of anti-runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 50, 96, 185, 353, 672, 1289, 2466, 4722, 9052, 17342, 33244, 63767, 122325, 234727, 450553, 864975, 1660951, 3190089, 6128033
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 14 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (1211)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
Other types of runs (instead of anti-):
- For leaders of constant runs we have A000041.
- For leaders of weakly decreasing runs we have A188900.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of strictly decreasing runs we have A374764.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For strictly increasing leaders we have A374679.
- For weakly decreasing leaders we have A374682.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374682 Number of integer compositions of n whose leaders of anti-runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 59, 114, 222, 434, 844, 1641, 3189, 6192, 12020, 23320, 45213, 87624, 169744, 328684, 636221, 1231067, 2381269, 4604713, 8901664
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.

Examples

			The a(0) = 1 through a(5) = 15 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (211)   (131)
                        (1111)  (212)
                                (221)
                                (311)
                                (1112)
                                (1121)
                                (1211)
                                (2111)
                                (11111)
		

Crossrefs

For reversed partitions instead of compositions we have A115029.
The complement is A374699.
Other types of runs (instead of anti-):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A189076, complement A374636.
- For leaders of weakly decreasing runs we have A374747.
- For leaders of strictly decreasing runs we have A374765.
- For leaders of strictly increasing runs we have A374697.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374517, ranks A374519.
- For distinct leaders we have A374518, ranks A374638.
- For weakly increasing leaders we have A374681.
- For strictly increasing leaders we have A374679.
- For strictly decreasing leaders we have A374680.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]

A374762 Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are strictly decreasing. The weakly decreasing version is A374764.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)
                (12)  (13)   (14)   (15)   (16)
                (21)  (31)   (23)   (24)   (25)
                      (121)  (32)   (42)   (34)
                             (41)   (51)   (43)
                             (131)  (123)  (52)
                                    (132)  (61)
                                    (141)  (124)
                                    (213)  (142)
                                    (231)  (151)
                                    (321)  (214)
                                           (232)
                                           (241)
                                           (421)
                                           (1213)
                                           (1231)
                                           (1321)
                                           (2131)
		

Crossrefs

For partitions instead of compositions we have A000009.
The weak version appears to be A188900.
The opposite version is A374689.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of anti-runs we have A374679.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: Product_{k>=1} (1 + x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024
Previous Showing 11-20 of 31 results. Next