cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A383828 Number of involutory racks of order n, up to isomorphism.

Original entry on oeis.org

1, 1, 2, 5, 13, 42, 180, 906, 6317
Offset: 0

Views

Author

Luc Ta, May 11 2025

Keywords

Comments

A rack is involutory if it satisfies the identity y(yx) = x. In particular, involutory quandles are called kei.
a(n) is also the number of Legendrian kei (i.e., kei equipped with Legendrian structures) up to order n up to isomorphism; see Ta, Theorem 1.1.
a(n) is also the number of symmetric kei (i.e., kei equipped with good involutions) up to order n up to isomorphism; see Ta, "Equivalences of...," Corollary 1.3.

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, pages 101-108.

Crossrefs

Programs

  • GAP
    # See Ta, GitHub link

A375353 T(m,n) = Number of m X n knot/link mosaics read by rows, with 1<=n<=m.

Original entry on oeis.org

1, 1, 2, 1, 4, 22, 1, 8, 130, 2594, 1, 16, 778, 54226, 4183954, 1, 32, 4666, 1144526, 331745962, 101393411126, 1, 64, 27994, 24204022, 26492828950, 31507552821550, 38572794946976686, 1, 128, 167962, 512057546, 2119630825150, 9841277889785426, 47696523856560453790, 234855052870954505606714
Offset: 1

Views

Author

Luc Ta, Aug 13 2024

Keywords

Comments

An m X n link mosaic is a suitably connected m X n array of the 11 tiles given by Lomonaco and Kauffman. The condition of being suitably connected means that the connection points of each tile coincide with those of the contiguous tiles. Thus, link mosaics depict projections of a link or a knot onto a plane.
The Mathematica program below is based on the algorithm given in Theorem 1 of Oh, Hong, Lee, and Lee.

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   22;
  1,  8,  130,    2594;
  1, 16,  778,   54226,   4183954;
  1, 32, 4666, 1144526, 331745962, 101393411126;
  ...
T(2,2) = 2 since the only suitably connected 2 X 2 link mosaics are the empty mosaic and the mosaic depicting an unknot attaining its minimal crossing number.
For all n >= 1, we have T(n,1) = 1 since the only suitably connected mosaic with one column is empty.
		

Crossrefs

The main diagonal T(n,n) is A261400.

Programs

  • Mathematica
    x[0] = o[0] = {{1}};
    x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
    o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 4*o[n - 1]}}];
    mosaics[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1];
    Flatten[ParallelTable[mosaics[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)

Formula

T(m,2) = A000079(m-1) for all m >= 2 and T(m,3) = A261399(m) for all m >= 3 due to Corollary 2 of Hong, H. Lee, H. J. Lee, and Oh.

A375354 T(m,n) is the number of suitably connected m X n Legendrian mosaics read by rows, with 1<=n<=m.

Original entry on oeis.org

1, 1, 2, 1, 4, 20, 1, 8, 104, 1504, 1, 16, 544, 22208, 948032, 1, 32, 2848, 329216, 40930304, 5204262912, 1, 64, 14912, 4883968, 1772261888, 666548862976, 254112496082944, 1, 128, 78080, 72464384, 76795762688, 85575149027328, 97392800416399360, 111879597850371293184
Offset: 1

Views

Author

Keywords

Comments

An m X n Legendrian mosaic is an m X n array of the 10 tiles given in Figure 5 of Pezzimenti and Pandey. These tiles represent part of a Legendrian curve in the front projection. The condition of being suitably connected means that the connection points of each tile coincide with those of the contiguous tiles.
The Mathematica program below is based on the algorithm given in Theorem 1 of Oh, Hong, Lee, and Lee, adapted to the Legendrian setting: since Legendrian mosaic tiles omit the crossing tile T_9 used in general knot mosaics, the bottom-right submatrix of O_(k+1) is 3*O_k rather than 4*O_k. See Theorem 6 of Kipe et al.
T(m,2) = A375353(m,2) = A000079(m-1) for all m >= 2 since neither classical nor Legendrian link mosaics with only 2 columns or rows can use T_9 tiles.

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4,   20;
  1,  8,  104,   1504;
  1, 16,  544,  22208,   948032;
  1, 32, 2848, 329216, 40930304, 5204262912;
  ...
T(2,2) = 2 since the only suitably connected 2 X 2 Legendrian mosaics are the empty mosaic and the mosaic depicting the Legendrian unknot with maximal Thurston-Bennequin invariant.
For all n >= 1, we have T(n,1) = 1 since the only suitably connected Legendrian mosaic with one column is empty.
		

Crossrefs

The main diagonal T(n,n) is A374947.

Programs

  • Mathematica
    x[0] = o[0] = {{1}};
    x[n_] := ArrayFlatten[{{x[n - 1], o[n - 1]}, {o[n - 1], x[n - 1]}}];
    o[n_] := ArrayFlatten[{{o[n - 1], x[n - 1]}, {x[n - 1], 3*o[n - 1]}}];
    legendrian[m_, n_] := If[m > 1 && n > 1, 2*Total[MatrixPower[x[m - 2] + o[m - 2], n - 2], 2], 1];
    Flatten[ParallelTable[legendrian[m, n], {m, 1, 11}, {n, 1, m}]] (* Luc Ta, Aug 13 2024 *)

Formula

T(m,3) = A082761(m-1) for all m >= 1. - Luc Ta, Aug 20 2024

A375355 T(m, n) is the number of m X n period knot/link mosaics read by rows, with 1 <= n <= m.

Original entry on oeis.org

7, 29, 359, 133, 5519, 316249, 641, 91283, 19946891, 4934695175, 3157, 1549799, 1298065813, 1268810595131, 1300161356831107, 15689, 26576579, 85436799491, 330595705214327, 1353434715973001999, 5644698772550126097593, 78253, 457549079, 5648174618317, 86566215054880187, 1416905739955631598043, 23696846086162116561085541, 399312236302057306354637147077
Offset: 1

Views

Author

Luc Ta, Aug 20 2024

Keywords

Comments

An m X n mosaic is an m X n array of the 11 tiles given by Lomonaco and Kauffman. A period m X n mosaic is an m X n mosaic whose opposite edges are identified. A period mosaic depicts a knot or link iff the connection points of each tile coincide with those of the contiguous tiles and with those of the tiles on identified edges.
The Mathematica program below is based on the algorithm given in Theorem 2 of Oh, Hong, Lee, Lee, and Yeon.
T(m, n) >= A375356(m, n) for all m and n, with equality iff m = n = 1.
T(m, 1) = A074600(m) for all m. To see this, proceed by induction on m. In Theorem 2 of Oh, Hong, Lee, Lee, and Yeon, it is clear that tr(X_{m+1}) = 2*tr(X_m) and tr(O_{m+1}) = 5*tr(O_m) for all m. The theorem states that T(m+1, 1) = tr(X_{m+1} + O_{m+1}) = tr(X_{m+1}) + tr(O_{m+1}) = 2*tr(X_m) + 5*tr(O_m), and the claim follows since tr(X_1 + O_1) = 7.

Examples

			Triangle begins:
      7;
     29,      359;
    133,     5519,      316249;
    641,    91283,    19946891,      4934695175;
   3157,  1549799,  1298065813,   1268810595131,    1300161356831107;
    ...
T(1,1) = 7 since the only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman.
		

Crossrefs

Programs

  • Mathematica
    x[0] = o[0] = {{1}}; y[0] = p[0] = {{0}};
    x[n_] := ArrayFlatten[{{x[n - 1], p[n - 1]}, {p[n - 1], x[n - 1]}}];
    y[n_] := ArrayFlatten[{{y[n - 1], o[n - 1]}, {o[n - 1], y[n - 1]}}];
    o[n_] := ArrayFlatten[{{o[n - 1], y[n - 1]}, {y[n - 1], 4 * o[n - 1]}}];
    p[n_] := ArrayFlatten[{{p[n - 1], x[n - 1]}, {x[n - 1], 4 * p[n - 1]}}];
    periodcount[m_, n_] := Tr[MatrixPower[x[m] + o[m], n]];
    Flatten[ParallelTable[periodcount[m, n], {m, 1, 11}, {n, 1, m}]]

A375356 T(m, n) is the number of m X n toroidal knot/link mosaics read by rows, with 1 <= n <= m.

Original entry on oeis.org

7, 18, 110, 49, 954, 35237, 171, 11591, 1662837, 308435024, 637, 155310, 86538181, 63440607699, 52006454275147
Offset: 1

Views

Author

Luc Ta, Aug 20 2024

Keywords

Comments

An m X n mosaic is an m X n array of the 11 tiles given by Lomonaco and Kauffman. A period m X n mosaic is an m X n mosaic whose opposite edges are identified. A toroidal m X n mosaic is an equivalence class of period m X n mosaics up to finite sequences of cyclic rotations of rows and columns. A toroidal mosaic depicts the projection of a knot or link on the surface of a torus iff the connection points of each tile coincide with those of the contiguous tiles and with those of the tiles on identified edges.
The first five rows of the triangle are from Table 2 of Oh, Hong, Lee, Lee, and Yeon.
Clearly, T(m,n) <= A375355(m,n) for all m,n, with equality iff m = n = 1.

Examples

			Triangle begins:
    7;
   18,    110;
   49,    954,    35237;
  171,  11591,  1662837,   308435024;
  637, 155310, 86538181, 63440607699, 52006454275147;
  ...
The only period 1 X 1 link mosaics are given by the tiles T_0 and T_5 through T_10 of Lomonaco and Kauffman. None of these mosaics are cyclic rotations of rows and columns of the others (since there are no rows or columns to permute in the first place). Therefore, T(1,1) = 7.
An exhaustive list of all 110 distinct 2 X 2 toroidal link mosaics is given collectively by Appendix A of Carlisle and Laufer and Figure 4 of Oh, Hong, Lee, Lee, and Yeon.
		

Crossrefs

The main diagonal T(n,n) contains A375357 as a subsequence.

A375357 a(n) is the number of p X p toroidal knot/link mosaics, where p = A000040(n).

Original entry on oeis.org

110, 35237, 52006454275147, 8149229312286883803155895853, 101957128471911748968541302399445156486848984449235985038696169948167385
Offset: 1

Views

Author

Luc Ta, Aug 20 2024

Keywords

Comments

A p X p mosaic is an p X p array of the 11 tiles given by Lomonaco and Kauffman. A period p X p mosaic is an p X p mosaic whose opposite edges are identified. A toroidal p X p mosaic is an equivalence class of period p X p mosaics up to finite sequences of cyclic rotations of rows and columns. A toroidal mosaic depicts the projection of a knot or link on the surface of a torus iff the connection points of each tile coincide with those of the contiguous tiles and with those of the tiles on identified edges.
The Mathematica program below is based on the algorithm given in Theorem 4 of Oh, Hong, Lee, Lee, and Yeon.

Examples

			An exhaustive list of all 110 distinct 2 X 2 toroidal link mosaics is given collectively by Appendix A of Carlisle and Laufer and Figure 4 of Oh, Hong, Lee, Lee, and Yeon.
		

Crossrefs

This is a subsequence of the diagonal of A375356.

Programs

  • Mathematica
    <A375355","Data"], PolygonalNumber[q], 2] - 2*Sum[f[q, k], {k, 0, (q - 1)/2}];
    toroidalcount[q_] := If[q > 2, (1/q^2) * g[q] + (2/q) * Sum[f[q, k], {k, 0, (q - 1)/2}] + 7, 110]
    Monitor[Table[toroidalcount[Prime[n]], {n, 1, 5}], Row[{ProgressIndicator[n, {1, 5}], n}, " "]]

A383829 Number of medial involutory racks of order n, up to isomorphism.

Original entry on oeis.org

1, 1, 2, 5, 12, 38, 168, 850, 6090
Offset: 0

Views

Author

Luc Ta, May 11 2025

Keywords

Comments

A rack is involutory if it satisfies the identity y(yx) = x. In particular, involutory quandles are called kei.
A rack is medial if it satisfies the identity (xy)(uv) = (xu)(yv).
a(n) is also the number of medial Legendrian kei (i.e., medial kei equipped with Legendrian structures) up to order n up to isomorphism; see Ta, Theorem 1.1.
a(n) is also the number of medial symmetric kei (i.e., medial kei equipped with good involutions) up to order n up to isomorphism; see Ta, "Equivalences of...," Corollary 1.3.

References

  • Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, pages 101-108.

Crossrefs

Programs

  • GAP
    # See Ta, GitHub link

A383830 Number of Legendrian quandles of order n, up to isomorphism.

Original entry on oeis.org

1, 1, 2, 5, 15, 54, 240, 1306, 9477
Offset: 0

Views

Author

Luc Ta, May 11 2025

Keywords

Comments

A Legendrian quandle is a pair (X,u) where X is a quandle and u is an involutory automorphism of X such that u(yx)=y(u(x)); see Ta, "Generalized Legendrian...," Corollary 3.13.
a(n) is also the number of racks X such that the kink map X -> X defined by x -> x(x) is an involution; see Ta, "Equivalences of...," Theorem 1.1.

Crossrefs

Programs

  • GAP
    # See Ta, GitHub link
Previous Showing 11-18 of 18 results.