cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A377780 First differences of A000015 (smallest prime-power >= n).

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 3, 0, 0, 1, 2, 0, 4, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 5, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 3, 0, 0, 4, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 2, 0, 2, 0, 6, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2024

Keywords

Crossrefs

First differences of A000015, restriction to primes A345531.
The opposite is A377782, restriction to primes A377781, differences of A065514.
For squarefree instead of prime-power see A067535, A112925, A112926, A120327.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A080101 counts prime-powers between primes (exclusive).
A361102 lists the non-powers of primes, differences A375708.
A366833 counts prime-powers between primes.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,!PrimePowerQ[#]&],{n,100}]]

A378456 Number of composite numbers between consecutive nonprime prime powers (exclusive).

Original entry on oeis.org

1, 0, 4, 5, 1, 2, 12, 11, 12, 31, 3, 1, 32, 59, 11, 25, 46, 13, 125, 14, 80, 88, 94, 103, 52, 261, 35, 267, 147, 172, 120, 9, 9, 163, 355, 279, 313, 207, 329, 347, 376, 108, 257, 805, 283, 262, 25, 917, 242, 1081, 702, 365, 752, 389, 251, 535, 1679, 877, 447
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

The inclusive version is a(n) + 2.
Nonprime prime powers (A246547) begin: 4, 8, 9, 16, 25, 27, 32, 49, ...

Examples

			The initial terms count the following composite numbers:
  {6}, {}, {10,12,14,15}, {18,20,21,22,24}, {26}, {28,30}, ...
The composite numbers for a(77) = 6 together with their prime indices are the following. We have also shown the nonprime prime powers before and after:
  32761: {42,42}
  32762: {1,1900}
  32763: {2,19,38}
  32764: {1,1,1028}
  32765: {3,847}
  32766: {1,2,14,31}
  32767: {4,11,36}
  32768: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

For prime instead of composite we have A067871.
For nonsquarefree numbers we have A378373, for primes A236575.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A002808 lists the composite numbers.
A031218 gives the greatest prime-power <= n.
A046933 counts composite numbers between primes.
A053707 gives first differences of nonprime prime powers.
A080101 = A366833 - 1 counts prime powers between primes.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the nearest prime power after prime(n) + 1, difference A377281.
Cf. A377286, A377287, A377288 (primes A053706).

Programs

  • Mathematica
    nn=1000;
    v=Select[Range[nn],PrimePowerQ[#]&&!PrimeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A377433 Number of non-perfect-powers x in the range prime(n) < x < prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 3, 1, 3, 3, 1, 3, 4, 5, 1, 4, 3, 1, 5, 2, 5, 7, 2, 1, 3, 1, 3, 11, 2, 5, 1, 8, 1, 5, 5, 3, 4, 5, 1, 9, 1, 2, 1, 11, 10, 2, 1, 3, 5, 1, 8, 4, 5, 5, 1, 5, 3, 1, 8, 13, 3, 1, 3, 12, 5, 8, 1, 3, 5, 6, 5, 5, 3, 5, 7, 2, 7, 9, 1, 9, 1, 5, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers without a proper integer root.
Positions of terms > 1 appear to be A049579.

Examples

			Between prime(4) = 7 and prime(5) = 11 the only non-perfect-power is 10, so a(4) = 1.
		

Crossrefs

Positions of 1 are latter terms of A029707.
Positions of terms > 1 appear to be A049579.
For prime-powers instead of non-perfect-powers we have A080101.
For non-prime-powers instead of non-perfect-powers we have A368748.
Perfect-powers in the same range are counted by A377432.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706.
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.
A366833 counts prime-powers between primes, see A053706, A053607, A304521, A377286.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Table[Length[Select[Range[Prime[n]+1, Prime[n+1]-1],radQ]],{n,100}]

Formula

a(n) + A377432(n) = A046933(n) = prime(n+1) - prime(n) - 1.

A378366 Difference between n and the greatest non prime power <= n (allowing 1).

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Crossrefs

Sequences obtained by subtracting each term from n are placed in parentheses below.
For nonprime we almost have A010051 (A179278).
For prime we have A064722 (A007917).
For perfect power we have A069584 (A081676).
For squarefree we have (A070321).
For prime power we have A378457 = A276781-1 (A031218).
For nonsquarefree we have (A378033).
For non perfect power we almost have A075802 (A378363).
Subtracting from n gives (A378367).
The opposite is A378371, adding n A378372.
A000015 gives the least prime power >= n (cf. A378370 = A377282 - 1).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n, weak version A007918.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[n-NestWhile[#-1&,n,PrimePowerQ[#]&],{n,100}]

Formula

a(n) = n - A378367(n).

A378252 Least prime power > 2^n.

Original entry on oeis.org

2, 3, 5, 9, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659, 4294967311, 8589934609
Offset: 0

Views

Author

Gus Wiseman, Nov 30 2024

Keywords

Comments

Prime powers are listed by A246655.
Conjecture: All terms except 9 are prime. Hence this is the same as A014210 after 9. Confirmed up to n = 1000.

Crossrefs

Subtracting 2^n appears to give A013597 except at term 3.
For prime we have A014210.
For previous we have A014234.
For perfect power we have A357751.
For squarefree we have A372683.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, diffs A375708 and A375735.
A031218 gives the greatest prime power <= n.
A244508 counts prime powers between powers of 2.
Prime powers between primes are counted by A080101 and A366833.

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n+1,!PrimePowerQ[#]&],{n,0,20}]
  • PARI
    a(n) = my(x=2^n+1); while (!isprimepower(x), x++); x; \\ Michel Marcus, Dec 03 2024
  • Python
    from itertools import count
    from sympy import primefactors
    def A378252(n): return next(i for i in count(1+(1<Chai Wah Wu, Dec 02 2024
    
Previous Showing 21-25 of 25 results.