A381807
Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0
The a(1) = 1 through a(4) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4}
{1,1,1} {1,1,1,3} {1,1,1,3,4}
{1,1,1,1,2} {1,2,2,2,3}
{1,1,1,1,1,1} {1,1,1,1,2,4}
{1,1,1,2,2,3}
{1,1,1,1,1,1,4}
{1,1,1,1,1,2,3}
{1,1,1,1,2,2,2}
{1,1,1,1,1,1,1,3}
{1,1,1,1,1,1,2,2}
{1,1,1,1,1,1,1,1,2}
{1,1,1,1,1,1,1,1,1,1}
The number of possible choices was
A066843.
A000688 counts multiset partitions into constant blocks.
A050361 and
A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]
A381808
Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.
Original entry on oeis.org
1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0
The a(1) = 1 through a(5) = 12 multisets:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{1,1,2,2} {1,1,2,2,4} {1,1,2,2,4,5}
{1,1,2,3,3} {1,1,2,3,3,5}
{1,1,1,2,2,3} {1,1,2,3,4,4}
{1,2,2,3,3,4}
{1,1,1,2,2,3,5}
{1,1,1,2,2,4,4}
{1,1,1,2,3,3,4}
{1,1,2,2,2,3,4}
{1,1,2,2,3,3,3}
{1,1,1,1,2,2,3,4}
{1,1,1,2,2,2,3,3}
A066723 counts partitions coarser than {1..n}, primorial case of
A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of
A300383.
Cf.
A001970,
A018818,
A213385,
A299200,
A321467,
A321468,
A321471,
A321514,
A355731,
A381453,
A381455.
-
Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]
A381872
Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1
The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
{{1,1,1,1,2,2}}
{{2,2},{1,1,1,1}}
{{1,1,2},{1,1,2}}
{{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
{{1,1,1,1,2,2,2,2}}
{{2,2,2},{1,1,1,1,2}}
{{1,1,2,2},{1,1,2,2}}
{{2,2},{2,2},{1,1,1,1}}
{{2,2},{1,1,2},{1,1,2}}
{{1,2},{1,2},{1,2},{1,2}}
{{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
With equal blocks instead of sums we have
A089723.
Positions of terms > 1 are
A321454.
With distinct instead of equal sums we have
A381637, before sums
A321469.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]
Comments